Zhang Zi-bing, Li Li-ping, Xiao Xian-ci. The Characteristic Analysis of Second Order Cyclostationarity of Continuous Phase Modulation Signal[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1726-1731.
Citation:
Zhang Zi-bing, Li Li-ping, Xiao Xian-ci. The Characteristic Analysis of Second Order Cyclostationarity
of Continuous Phase Modulation Signal[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1726-1731.
Zhang Zi-bing, Li Li-ping, Xiao Xian-ci. The Characteristic Analysis of Second Order Cyclostationarity of Continuous Phase Modulation Signal[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1726-1731.
Citation:
Zhang Zi-bing, Li Li-ping, Xiao Xian-ci. The Characteristic Analysis of Second Order Cyclostationarity
of Continuous Phase Modulation Signal[J]. Journal of Electronics & Information Technology, 2005, 27(11): 1726-1731.
Continuous Phase Modulated (CPM) signals play a prominent role in modern satellite communication systems and mobile communication systems due to their constant envelope property and bandwidth efficiencies. However, there was no much comprehensive reference concerning the cyclostationarity of the large family of CPM. In this paper, the general band-pass cyclic spectral representations of the continuous phase modulation are derived and analyzed in detail based on the analytical expression of the corresponding base-band cyclic spectra; as well, the relation between cyclic frequency and carrier frequency, code width, peak frequency deviation is obtained with the different modulation indexes. These conclusions are proved by the computer simulations.
Laurent P A. Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses[2]IEEE Trans. on Communications, 1986, 34(2): 150-160.[3]Mengali U , Morelli M. Decomposition of M-ray CPM signals into PAM waveforms[J].IEEE Trans. Information Theory.1995, 41(5):1265-1275[4]Garder W A. Statistical Spectral Analysis: A Nonprobabilistic Theory. Englewood Cliffs, NJ: Prentice-Hall, 1987, chap 9 chap 13.[5]Garder W A. Introduction to Random Processes: with Application to Signals and Systems. McGraw-Hill, 1990, chap 10 chap 13.[6]Garder W A. The spectral correlation theory of cyclostationary time-series[J].Signal Processing.1986, 11(2):13-36[7]Garder W A, Ed. Cyclostationarity in Communications and Signal Processing. New York: IEEE, 1994, chap 1.[8]黄春琳,姜文利,周一宇. 对低截获概率相位编码信号检测的有限多循环检测器. 电子学报, 2002,30(6):916-918.[9]黄春琳,姜文利,周一宇. 窄带强干扰下直接扩谱序列信号的有限多循环检测器. 通信学报,2003,24(3):105-112.[10]黄春琳, 柳征,姜文利,周一宇. 基于循环谱包络的扩谱直序信号的码片时宽、载频、幅度估计. 电子学报,2002,30(9):1353-1356.[11]黄知涛,姜文利,周一宇. 多循环频率循环时延估计方法及性能分析. 电子学报,2004,32(1):102-108.[12]黄知涛,周一宇,姜文利. 基于循环平稳特性的源信号到达角估计方法. 电子学报,2002,30(3):372-375.[13]金梁,姚敏立,殷勤业. 宽带循环平稳信号的二维空间谱估计. 通信学报, 2000,21(3):7-11.[14]张贤达.非平稳信号分析与处理. 北京:清华大学出版社,1997.[15]Napolitano A, Spooner C M. Cyclic spectral analysis of continuous-phase modulated signals[J].IEEE Trans. on SP.2001, 49(1):30-44[16]Gournay P ,Viravau P. Corrlation spectrale thorique des[17]modulations CPM-PartieI: Resultat analytique pour les modulations CPFSK 2 tats(1REC). Ann. Tlcommun, 1998, 53(7/8): 267-278.[18]Viravau P, Gournay P. Corrlation spectrale thorique des modulations CPM-Partie II: Mthode de calcul gnrale et analyse[J].Ann. Tlcommun.1998, 53(7/8):279-288[19]Proakis J G. Digital Communications. Third Ed. New York: McGraw-Hill, 1995, chap 4.