Advanced Search
Volume 24 Issue 10
Oct.  2002
Turn off MathJax
Article Contents
Dai Xiaoming, Zou Runmin, Feng Rui, Zhang Hongyuan, Shao Huihe. A hybrid parallel genetic algorithm and its application to TSP[J]. Journal of Electronics & Information Technology, 2002, 24(10): 1424-1427.
Citation: Dai Xiaoming, Zou Runmin, Feng Rui, Zhang Hongyuan, Shao Huihe. A hybrid parallel genetic algorithm and its application to TSP[J]. Journal of Electronics & Information Technology, 2002, 24(10): 1424-1427.

A hybrid parallel genetic algorithm and its application to TSP

  • Received Date: 2001-04-17
  • Rev Recd Date: 2001-12-19
  • Publish Date: 2002-10-19
  • This paper applies a multiple population Genetic Algorithm (GA) to solving the TSP (Traveling Salesman Problem). Different populations apply different mutation factors to achieve different search objects. The transition factor among the groups is used to solve the premature convergence problem under some circumstances. It accelerates search process in state space. The experimental results show that this algorithm has great advantage of convergence property over canonical genetic algorithm.
  • loading
  • D.B. Fogel, Evolutionary Computation [M], New York, IEEE Press, 1995, 33-99. [2]C.K. Mohan, Selective crossover: Towards fitter offspring, Tech. Report SU-EECS TR 97-1,Dept. of EECS, Syracuse University, 1997.[2]B. Yoon, D. J. Holmes, Efficient genetic algorithms for training layered feed forward neural networks, Information Sciences, 1994, 76(1/2), 67-85.[3]J.H. Holland, Adaptation in Natural and Artificial Systems, Michigan University Press, 1975,12-73.[4]玄光男,程润伟,遗传算法与工程设计,北京,科学出版社,2000,1-145.[5]G. Reinelt, TSPLIB; ftp://softlib.rice.edu/pub/tsplib/tsplib/tsplib.tar, 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2583) PDF downloads(669) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return