Zhang Jun, Huang Guanglian, Zhang Jian. TIME-DOMAIN DYADIC GREEN s FUNCTION AND THE CHARACTERISTICS IN TIME-DOMAIN FOR AN IDEAL CONDUCTING WEDG[J]. Journal of Electronics & Information Technology, 1990, 12(6): 569-574.
Citation:
Zhang Jun, Huang Guanglian, Zhang Jian. TIME-DOMAIN DYADIC GREEN s FUNCTION AND THE CHARACTERISTICS IN TIME-DOMAIN FOR AN IDEAL CONDUCTING WEDG[J]. Journal of Electronics & Information Technology, 1990, 12(6): 569-574.
Zhang Jun, Huang Guanglian, Zhang Jian. TIME-DOMAIN DYADIC GREEN s FUNCTION AND THE CHARACTERISTICS IN TIME-DOMAIN FOR AN IDEAL CONDUCTING WEDG[J]. Journal of Electronics & Information Technology, 1990, 12(6): 569-574.
Citation:
Zhang Jun, Huang Guanglian, Zhang Jian. TIME-DOMAIN DYADIC GREEN s FUNCTION AND THE CHARACTERISTICS IN TIME-DOMAIN FOR AN IDEAL CONDUCTING WEDG[J]. Journal of Electronics & Information Technology, 1990, 12(6): 569-574.
Based on Ohm-Rayleigh method and Laplace transform, the time-domain dyadic Green s functions for a ideal conducting wedge are obtained. The Characteristics of the wedge in time-domain are systematically analysed. Some conclusions are given, and C. T. Tai s theory (1973) is complemented. These studies are provided a further reference for time-domain analysis of an ideal conducting wedge.
C. T. Tai, Dyadic Green's Functions in Electromagnetic Theory, Intext Educational Publishers, Stratton, Pa., (1971).[2]C. T. Tai, Mathematics Note 28, Weapons Systems Lab. Kirtland, .AFB. ACb. N. M., July 1973.[3]A. H. Mohammadian, IEEE Trans. on AP, AP-36(1988), 369-375.[4]L. B. Felsen, Transient Ellecrromgnetic Fields, Springer-Verlag Berlin Heidelberg, New York (1976), pp.38-47.[5]Fnitz Oberhettinger, Tables of Bessel Transforms, Springer-Verlag Berlin Heidelberg, New York (1972).