Ma Changzheng, Zhang Shouhong, Jiao Licheng. THE OPTIMAL WINDOW FUNCTIONS OF SHORT TIME FOURIER TRANSFORM AND PSEUDO-WIGNER DISTRIBUTION[J]. Journal of Electronics & Information Technology, 1999, 21(4): 467-472.
Citation:
Ma Changzheng, Zhang Shouhong, Jiao Licheng. THE OPTIMAL WINDOW FUNCTIONS OF SHORT TIME FOURIER TRANSFORM AND PSEUDO-WIGNER DISTRIBUTION[J]. Journal of Electronics & Information Technology, 1999, 21(4): 467-472.
Ma Changzheng, Zhang Shouhong, Jiao Licheng. THE OPTIMAL WINDOW FUNCTIONS OF SHORT TIME FOURIER TRANSFORM AND PSEUDO-WIGNER DISTRIBUTION[J]. Journal of Electronics & Information Technology, 1999, 21(4): 467-472.
Citation:
Ma Changzheng, Zhang Shouhong, Jiao Licheng. THE OPTIMAL WINDOW FUNCTIONS OF SHORT TIME FOURIER TRANSFORM AND PSEUDO-WIGNER DISTRIBUTION[J]. Journal of Electronics & Information Technology, 1999, 21(4): 467-472.
Short time Fourier transform and pseudo-Wigner distribution are two most useful tools in time-frequency analysis, the choice of window functions is the base for their applications, which require deep study. The criteria of window functions are discussed in detail, and the optimal length of window is obtained by means of optimal frequency resolutions.
Cohen L. Time-frequency distribution: A review[J].Proc. IEEE.1989, 77(7):941-981[2]Mann S, Haykin S. The chirplet transform: Physical considerations[J].IEEE Trans. on. SP.1995, 43(11):2745-2761[3]Jone D L, Parks T W. A hi沙resolution data-adaptive time-frequency represention, IEEE Trans on ASSP, 1990, ASSP-38(12): 2127-2135.[4]Andrieux J C, Feix M R, Mourgues G, Bertrand P, Izrar B, Nguyen V T. optimal smoothing of the Wigner-Ville distribution, IEEE Trans. on ASSP, 1987, ASSP-35(6): 764-769.[5]Barber N F, Ursell F. The response of a resonent system to a gliding tone. Phili. Mag. 1948, 39(1): 345-361.[6]Dahlquist G著.包雪松译.数值方法高等教育出版社.1990, 140.[7]Boashash B. Estimating and interpreting the instantaneous frequency of a signal, Part 1: Funda-[8]mentals and Part 2: Algorithms and applications. Proc[J].IEEE.1992, 80(4):520-538[9]孙晓兵.非平德信号的时颇分析方法及其应用:[博士论文].西安:西安电子科技大学,1996.