Zhang Zhan, Hou Jiechang, Liao Mengyang. TEXTURE ANALYSIS BASED ON MAXIMUM POTENTIAL[J]. Journal of Electronics & Information Technology, 1999, 21(3): 315-319.
Citation:
Zhang Zhan, Hou Jiechang, Liao Mengyang. TEXTURE ANALYSIS BASED ON MAXIMUM POTENTIAL[J]. Journal of Electronics & Information Technology, 1999, 21(3): 315-319.
Zhang Zhan, Hou Jiechang, Liao Mengyang. TEXTURE ANALYSIS BASED ON MAXIMUM POTENTIAL[J]. Journal of Electronics & Information Technology, 1999, 21(3): 315-319.
Citation:
Zhang Zhan, Hou Jiechang, Liao Mengyang. TEXTURE ANALYSIS BASED ON MAXIMUM POTENTIAL[J]. Journal of Electronics & Information Technology, 1999, 21(3): 315-319.
Potential is an important conception in Gibbs random field (GRF) model. In this paper, an approach for texture analysis based on maximum potential is presented. Experimental results prove that this approach can be an effective means for texture analysis.
Acuna C O. Texture modeling using Gibbs distributions[J].Graphic Models Image Processing.1992,54(3):210-222[2]Nguyen H H, Cohem P. Clustering and the unsupervised segmentation of texture image[J].Graphic ModelsImage Processing.1993, 55(1):1-19[3]Gurelli M I, Onural L. A parameter estimation method for Gibbs-Markov random field. IEEE Trans. on PAMI, 1994, PAMI-16(4): 424-430.[4]Levitan E, Chan M, Herman G T. Image modeling Gibbs priors[J].Graphic ModelsImage Processing.1995, 57(2):117-130