Advanced Search
Volume 23 Issue 8
Aug.  2001
Turn off MathJax
Article Contents
Chen Yong, Ling Cong. NONLINEAR TRANSFER FUNCTION IMPROVING THE PERIOD PROPERTY OF (QUASI-)CHAOTIC DIGITAL FILTERS[J]. Journal of Electronics & Information Technology, 2001, 23(8): 829-832.
Citation: Chen Yong, Ling Cong. NONLINEAR TRANSFER FUNCTION IMPROVING THE PERIOD PROPERTY OF (QUASI-)CHAOTIC DIGITAL FILTERS[J]. Journal of Electronics & Information Technology, 2001, 23(8): 829-832.

NONLINEAR TRANSFER FUNCTION IMPROVING THE PERIOD PROPERTY OF (QUASI-)CHAOTIC DIGITAL FILTERS

  • Received Date: 1999-07-30
  • Rev Recd Date: 2000-02-15
  • Publish Date: 2001-08-19
  • In this paper, a method to improve the period property of (quasi-)chaotic digital filters by inserting a nonlinear transfer function is presented. Simulation results show that the resulted chaotic sequences have siginificantly increased periods while still preserving good correlation. Moreover, the structure is well suited to be realized in digital hardware and is thus attractive for applications to digital communications.
  • loading
  • R.F. Douglas, Chaotic digital encoding: An approach to secure comnmunication, IEEE Trans on CAS-II, 1993, CAS-II-40(10), 660-666.[2]Ling Cong, Sun Songgeng, Chaotic frequency hopping sequences, IEEE Trans. on Commun.1998, COM-46(11), 1433-1437.[3]T. Lin, L. O. Chua, On chaos of digital filters in the real world, IEEE Trans. on CAS, 1991, CAS-38(5), 557-558.[4]T. Lin, L. O. Chua, Chaos in digital filters, IEEE Trans. on CAS, 1988, CAS-35(6), 648-658.[5]周红,凌燮亭,有限精度混沌系统的m序列扰动实现,电子学报,1997,25(7),95-97[6]M. Gotz, K. Kelber, W. Schwarz, Discrete-time chaotic encryption systems-Part I: Statistical design approach, IEEE Trans. on CAS-I, 1997, CAS-I- 44(10), 963-970.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2266) PDF downloads(453) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return