Advanced Search
Volume 25 Issue 10
Oct.  2003
Turn off MathJax
Article Contents
Hua Yihe, Xu Jinping. Integral singularity reduction by the localy continuous basis functions used in moment method with electric fidld integral equation[J]. Journal of Electronics & Information Technology, 2003, 25(10): 1436-1440.
Citation: Hua Yihe, Xu Jinping. Integral singularity reduction by the localy continuous basis functions used in moment method with electric fidld integral equation[J]. Journal of Electronics & Information Technology, 2003, 25(10): 1436-1440.

Integral singularity reduction by the localy continuous basis functions used in moment method with electric fidld integral equation

  • Received Date: 2002-05-13
  • Rev Recd Date: 2002-10-24
  • Publish Date: 2003-10-19
  • A new symmetrical formulation without O(1/R2) singularity is presented to cal-culate the impedance matrix elements as long as the rooftop basis functions have the character of local continuity. With this new formulation, one needs only take care about the O(1/R) singularity that is very easy to resolve. Several different types of rooftop basis functions are analyzed and compared, on which our formulation is applied. Numerical results are presented which have proved the validity, the efnciency and the universality of the new formulation.
  • loading
  • J.H.R.ichmond, A wire-grid model for scattering by conducting bodies, IEEE Trans. Ant.Prop., 1966, AP-14(6), 782-786.[2]S.M. Rao, D. R. Wilton, A. W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. on Ant. Prop., 1982, AP-30(3), 409-418.[3]E.H. Newman, P. Tulyatha, A surface patch model for polygonal plates, IEEE Trans. on Ant. Prop., 1982, AP-30(4), 588-593.[4]D.L. Wilkes, C. C. Cha, Method of moments solution with parametric curved triangular patches,1991 International IEEE APS Symposium Digest, London, Ontario, Canada, 1991, 1512-1515.[5]J.M. Song, W. C. Chew, Moment method solutions using parametric geometry, Journal of Electromagnetic Waves and Appl., 1995, 9(1/2), 71-83.[6]B.M. Kolundzija, On the locally continuous formulation of surface doublets, IEEE Trans. Ant. Prop., 1998, AP-46(12), 1879-1883.[7]王浩刚,聂在平,三维矢量积分方程中奇异性的分析,电子学报,1999,27(12),68-71.[8]姚海英,聂在平,三维矢量散射分析中奇异积分的准确计算方法,电子科学学刊,2000,22(3),471-477.[9]R. Coifman, V. Rokhlin, S. Greengard, The fast multipole method for the wave equation.[J].A pedestrian prescription, IEEE Ant. Prop. Magazine.1993,35(3):7-12[10]C.C. Lu, W. C. Chew, A multilevel algorithm for solving boundary-value scallering, Microwave Opt. Tech. Lett., 1994, 7(10), 466-470.[11]戴振铎,鲁述,电磁理论中的并矢格林函数,武汉,武汉大学出版社,1995,324.[12]A. Balanis.[J].Advanced Engineering Electromagnetics, New York, Wiley Sons.1989,:-[13]J. L. Volakis, Benchmark radar targets for the validation of computational electromagnetics programs, IEEE Ant. Prop. Magazine, 1993, 35(1), 84-89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2530) PDF downloads(525) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return