Fan Zhong, Tian Lisheng. CHOOSING OPTIMAL ORTHOGONAL WAVELETS FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1995, 17(5): 449-455.
Citation:
Fan Zhong, Tian Lisheng. CHOOSING OPTIMAL ORTHOGONAL WAVELETS FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1995, 17(5): 449-455.
Fan Zhong, Tian Lisheng. CHOOSING OPTIMAL ORTHOGONAL WAVELETS FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1995, 17(5): 449-455.
Citation:
Fan Zhong, Tian Lisheng. CHOOSING OPTIMAL ORTHOGONAL WAVELETS FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1995, 17(5): 449-455.
The discrete wavelet transform decomposes a discrete time signal into an approximation sequence and a detail sequence at each level of resolution. Compactly supported orthonormal wavelets correspond to perfect reconstruction (PR) quadrature mirror filter (QMF) banks. This paper deals with the problem of choosing orthogonal wavelet (scaling) filters for best signal approximation at some scales. By using a kind of parametrization method, the constrained optimization can be converted into an unconstrained one.Some simulations are shown here.
Rioul O, Vetterli M. IEEE Signal Processing Mag., 1991,8(4):14-38.[2]Mallat S. IEEE Trans. on PAMI, 1989, PAMI-11(7):674-693.[3]Doubechies I. Commun[J].Pure Appl. Math.1988, 41(3):909-996[4]Desarte Ph, et al. IEEE Trans. on IT, 1992, IT-38(2):897-904.[5]Gutski G C, et al. Optimal linear filters for pyramidal decomposition, in Proc. ICASSP, Vol.4, San Francisco, CA: 1992, 633-636.[6]Unser M. IEEE Trans. on SP, 1993, SP-41(12): 3591-3596.[7]Vaidyanathan P P. Proc[J].IEEE.1990, 78(1):56-93[8]Zou H, Tewfik A. IEEE Trans. on SP, 1993, SP-41(3): 1428-1431.[9]余俊,廖道训.最优化方法及其应用.武汉:华中工学院出版社,1984,第三章.