Advanced Search
Volume 17 Issue 5
Sep.  1995
Turn off MathJax
Article Contents
Fan Zhong, Tian Lisheng. CHOOSING OPTIMAL ORTHOGONAL WAVELETS FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1995, 17(5): 449-455.
Citation: Fan Zhong, Tian Lisheng. CHOOSING OPTIMAL ORTHOGONAL WAVELETS FOR SIGNAL APPROXIMATION[J]. Journal of Electronics & Information Technology, 1995, 17(5): 449-455.

CHOOSING OPTIMAL ORTHOGONAL WAVELETS FOR SIGNAL APPROXIMATION

  • Received Date: 1994-05-03
  • Rev Recd Date: 1994-09-29
  • Publish Date: 1995-09-19
  • The discrete wavelet transform decomposes a discrete time signal into an approximation sequence and a detail sequence at each level of resolution. Compactly supported orthonormal wavelets correspond to perfect reconstruction (PR) quadrature mirror filter (QMF) banks. This paper deals with the problem of choosing orthogonal wavelet (scaling) filters for best signal approximation at some scales. By using a kind of parametrization method, the constrained optimization can be converted into an unconstrained one.Some simulations are shown here.
  • loading
  • Rioul O, Vetterli M. IEEE Signal Processing Mag., 1991,8(4):14-38.[2]Mallat S. IEEE Trans. on PAMI, 1989, PAMI-11(7):674-693.[3]Doubechies I. Commun[J].Pure Appl. Math.1988, 41(3):909-996[4]Desarte Ph, et al. IEEE Trans. on IT, 1992, IT-38(2):897-904.[5]Gutski G C, et al. Optimal linear filters for pyramidal decomposition, in Proc. ICASSP, Vol.4, San Francisco, CA: 1992, 633-636.[6]Unser M. IEEE Trans. on SP, 1993, SP-41(12): 3591-3596.[7]Vaidyanathan P P. Proc[J].IEEE.1990, 78(1):56-93[8]Zou H, Tewfik A. IEEE Trans. on SP, 1993, SP-41(3): 1428-1431.[9]余俊,廖道训.最优化方法及其应用.武汉:华中工学院出版社,1984,第三章.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1866) PDF downloads(369) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return