Advanced Search
Volume 27 Issue 6
Jun.  2005
Turn off MathJax
Article Contents
Zhu Tie-wen, Chen Shao-qiang, Li Qi, Miao Qian-jun . A Construction Method of Biorthogonal Bases of Perfect Reconstruction Wavelet[J]. Journal of Electronics & Information Technology, 2005, 27(6): 900-904.
Citation: Zhu Tie-wen, Chen Shao-qiang, Li Qi, Miao Qian-jun . A Construction Method of Biorthogonal Bases of Perfect Reconstruction Wavelet[J]. Journal of Electronics & Information Technology, 2005, 27(6): 900-904.

A Construction Method of Biorthogonal Bases of Perfect Reconstruction Wavelet

  • Received Date: 2004-01-06
  • Rev Recd Date: 2004-05-25
  • Publish Date: 2005-06-19
  • In the applications of wavelet, it is the most difficult and cumbrous to select the suitable wavelet bases. In this paper, a general construction method of biorthogonal bases of perfect reconstruction wavelet is proposed by using the transmission functions or filters. According to the conclusion, something only to do is to choice the suitable coefficients a,y(co) for constructing the wavelet bases of perfect reconstruction which has special properties. So, this conclusion is important to the applications of wavelet.
  • loading
  • Zhang Z, Toda H, Kawabata H. A new complex wavelet: ri-spline wavelet and its application to signal processing. Proc. of the 41 st SICE Annual Conference, Osaka, Japan, 5-7 Aug. 2002. Vol.4:2496 - 2501.[2]Rioul O, Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine, 1991, 8(4): 14 - 18.[3]Thakor N V, Sun Y, Rix H, Caminal P. Multiwave: A wavelet-based ECG data compression. IEICE Trans. Info. Syst.,1993, E76-D(12): 1462 - 1469.[4]Lewis A, Knowles G. Image compression using 2-D wavelet transform[J].IEEE Trans. on Image Processing.1992, 1(2):244-[5]Vitterli M, Herley C. Wavelets and filter banks: theory and design[J].IEEE Trans. on Signal Processing.1992, 40(9):2207-[6]Lang M, Guo H, Odegard J E, Burrus C S, Wells R O. Noise reduction using an undecimated discrete wavelet transform[J].IEEE Signal Processing Letters.1996, 3(1 ):10-[7]Dragotti P L, Vetterli M. Shift-invariant gibbs free denoising algorithm based on wavelet tranform footprints. Proc. of SPIE,2000, Wavelet Application in Signal and Image Processing, San Diego, USA, Aug. 2000.[8]Boccignone G, Chianese A, Picariello A. Using Renyis information and wavelets for target detection: An application to mammograms[J].Pattern Analysis Applications.2000, 3(4):303-[9]Sweldens W. The lifting scheme: A construction of second generation wavelets. Technical Report 1995:6, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1995.[10]Sweldens W. The iifting scheme: A custom-design construction of biorthogonal wavelets[J].Journal of Appl. and Comput. Harmonic Analysis.1996, 3(2):186-[11]耿则勋.小波变换理论及在遥感影像压缩中的应用.北京:测绘出版社,2002:15-20.[12]Mallat S G. A theory for multiresolution signal decomposotion:the wavelet representation. IEEE. Trans. on PAMI, 1989, 11(7):674 - 693.[13]李素芝,万建伟.时域离散信号处理.长沙:国防科技大学出版社,1994,第3章.[14]Cohen A, Daubechies I, Feauveau J. Bi-orthogonal bases of compactly supported wavelets[J].Comm. On Pure Appl. Math.1992,45(5):485-[15]刘春生,张晓春.实用小波分析.北京:中国矿业大学出版社,2002:71-76.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2284) PDF downloads(785) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return