Advanced Search
Volume 23 Issue 11
Nov.  2001
Turn off MathJax
Article Contents
Zhang Zongping, Liu Guizhong, Dong Enqing. DENOISING VIA DYADIC WAVELET TRANSFORM[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1083-1090.
Citation: Zhang Zongping, Liu Guizhong, Dong Enqing. DENOISING VIA DYADIC WAVELET TRANSFORM[J]. Journal of Electronics & Information Technology, 2001, 23(11): 1083-1090.

DENOISING VIA DYADIC WAVELET TRANSFORM

  • Received Date: 1999-11-30
  • Rev Recd Date: 2000-09-14
  • Publish Date: 2001-11-19
  • Signals representation in dyadic wavelet domain is very redundant. Compared with wavelet series reconstruction, signals dyadic wavelet reconstruction dependency on the individual coefficients in transform domain will be decreased. Therefore, with the same error decision probability, the better reconstruction can be expected. Based on this idea, this paper extends the existing wavelet-based denoising approaches to the dyadic wavelet-based denoising. Numerical experiments show that the dyadic wavelet-based denoising can significantly improve the signal-to-noise rate (SNR).
  • loading
  • D.L. Donoho, I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika 1994,81 (2), 425-455.[2]D.L. Donoho, I. M. Johnstone, Wavelets and optimal nonparametric function estimation, Tech-nical Report. Dept. of Statistics, U. C. Berkeley, 1990.[3]S. Mallat, A theory for multiresolution decomposition: the wavelet representation, IEEE Trans.on Pattn. Anal. Mach. Intell., 1989, 11(7), 674-693.[4]S. Mallat, S. Zhong, Characterization of signals from multiscale edges, IEEE Trans. on Pattn.Anal. Mach. Intell., 1992, 14(7), 709-732.[5]S. Mallat, W. L. Hwang, Singularity detection and processing with wavelets, Technical ReportNo. 549, Robotics Report, No. 245, New York University, Courant Institute of MathematicalSciences. March. [6]S[J].Saitoh, Theory of reproducing kernels and its applications, Longman Scientific TechnicalPress.1991,1988:1-15[6]D.L. Donoho, De-noising via soft-thresholding, IEEE Trans. on Info. Theo., 1992, 41(3), 613627.[7]F. Abramovich, et al., Wavelet thresholding via a Bayesian approach. J. R. Statistc. Soc., 1998,B60, Part 4, 725-749.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2401) PDF downloads(632) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return