Advanced Search
Volume 20 Issue 6
Nov.  1998
Turn off MathJax
Article Contents
Qian Zhi-Ming, Zhong Ping, Wang Run-Sheng. Automatic Image Annotation via Graph Regularization and Non-negative Group Sparsity[J]. Journal of Electronics & Information Technology, 2015, 37(4): 784-790. doi: 10.11999/JEIT141282
Citation: Yang Shaoguo, Yin Zhongke, Luo Bingwei. MULTISCALE IMAGE SEGMENTATION USING FRACTAL AND NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1998, 20(6): 727-732.

MULTISCALE IMAGE SEGMENTATION USING FRACTAL AND NEURAL NETWORK

  • Received Date: 1997-01-20
  • Rev Recd Date: 1998-01-15
  • Publish Date: 1998-11-19
  • Clustering algorithms in feature space are important methods in image segmentation. The choice of the effective feature parameters and the construction of the clustering method are key problems encountered with clustering algorithms. In this paper we chose multifractal dimensions as the segmentation feature parameters which are extracted from original image and wavelet-transformed image. SOM network is applied to cluster the segmentation feature parameters. The experiment shows that the performance of our algorithm is very good.
  • Ishimura N. Estimation of fractal dimension values in natural navigation images and its application to region segmentation. Joural of Japan Institute of Navigation, 1994, 90(3): 43-51.[2]Fortin C S. Fractal dimension in the analysis of medical images. IEEE Engineering in Medicine and Biology Xlagazine, 1992, 11(,)65-71.[3]Chang J. Image segmentation (IS) and local fractal analyses of MR images. Conference Record of the 1992 IEEE Nuclear Science Symposium and Medical Imaging Conference, Orlando, FL, USA: 1992, 2: 1268-1273.[4]Lefebvre F. A fractal approach to the segmentation of microcalcifications in digital mammograms[J].Medical Physics.1995, 22(4):381-390[5]Wong S H. Automatic segmentation of ultrasonic image. Proceedings TENCON93, 1993 IEEE Region 10 Conference on `Computer, Communication, Control and Power Engineering, Beijing, China: 1993, Vo1.2, 910-913.[6]Chan K L. Quantitative characterization of electron micrograph image using fractal feature[J].IEEE Trans. on Biomedical Engineering.1995, 42(10):1033-1037[7]Moghaddam B. Ractal dimension segmentation of synthetic aperture radar imagery. ISSPA 92, Third International Symposium on Signal Processing and its Application, Proceedings, Gold Coast, Auslralia: 1992, 455-458[8]朱光喜, 张平, 朱烟庭. 基于分形维数的图象分割研究.计算机科学, 1994, 21(1): 59-65.[9]罗立民,等.基于纹理分析的磁共振图象区域分割.自动化学报,1995, 21(4): 504-508.[10]Xue Dong-hui. The object detection based on multiscale fractal character vector. IEEE International Conference on Neural Networks and Signal Processing, 1995, 1451-1454.[11]Pentland A P. Fractal-based description of natural scences. IEEE Trans. on Pattern Analysis[12]and Machine Intelligence, 1984, PAMI-6(6): 661-674.[13]Peli T. Multiscale fractal theory and object characterization[J].J. Opt. Soc. Am. A.1990, 7(6):1101-1112[14]Dubuisson M P. Efficacy of fractal features in segmenting images of natural textures[J].Pattern Recognition Letters.1994, 15(4):419-431[15]Kasparis T. Texture description using fractal and energy features[J].Computers Electrical Engineering.1995, 21(1):21-32[16]Chaudhuri B B. Texture segmentation using fractal dimension. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, PAMI-17(1): 72-77.[17]Mallat S G. A Theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989, PAMI-11(7): 674-693.[18]Arneodo A. Wavelet transform of multifractals[J].Physical Review Letters.1988, 61(20):2281-2284[19]Xuegong Zhang. Self-organizing map as a new method for clustering and data analysis. Proceed-[20]ings of 1993 International Joint Conference on Neural Networks, Nagoya, Japan: 1993, 2448-2451.[21]Witoon Suewatanakul. Comparison of artificial neural networks and traditional classifiers via the two-spiral problem. SPIE, 1992, 1721: 275-282.
  • Cited by

    Periodical cited type(4)

    1. 李松涛,李维刚,甘平,蒋林. 基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法. 电子与信息学报. 2022(12): 4384-4394 . 本站查看
    2. 于琨,孙波,海本斋. 基于超图排序和组稀疏最优化的推荐系统. 计算机工程与设计. 2018(07): 1996-2001 .
    3. 李冰锋,唐延东,韩志. 基于超图直推非负矩阵分解的图像标注法研究. 计算机仿真. 2017(02): 380-384+440 .
    4. 王瑞霞,彭国华. n-words模型下Hesse稀疏表示的图像检索算法. 电子与信息学报. 2016(05): 1115-1122 . 本站查看

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2411) PDF downloads(389) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return