Advanced Search
Volume 23 Issue 7
Jul.  2001
Turn off MathJax
Article Contents
Wang Ling, Song Guoxiang . A MULTIWAVELET WITH NON-BOUNDARY DISTORTION[J]. Journal of Electronics & Information Technology, 2001, 23(7): 693-699.
Citation: Wang Ling, Song Guoxiang . A MULTIWAVELET WITH NON-BOUNDARY DISTORTION[J]. Journal of Electronics & Information Technology, 2001, 23(7): 693-699.

A MULTIWAVELET WITH NON-BOUNDARY DISTORTION

  • Received Date: 1999-06-11
  • Rev Recd Date: 2000-01-03
  • Publish Date: 2001-07-19
  • The multiwavelet research has been an important aspect of the wavelet theory in recent years. This paper summarizes some important properties of multiwavelets. Using the properties of orthogonality and symmetry, A multiwavelet with compact support in [0,1], accurate reconstruction and approximation order 2 is constructed. The multiwavelet has the most advantage of non- boundary distortion. Needless to prefilter, it has better lowpass and highpass characteristics after being balanced. Examples of signal reconstruction and image compression are given, with satisfactory reconstruction results over the single wavelet.
  • loading
  • Jiang Qingtang, On the design of multifilter banks and orthonormal multiwavelet banks, IEEE Trans. on Signal Processing, 1998, SP-46(12), 3292-3302.[2]T.N.T. Goodman, S. L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc., 1994, 342(1), 307-324.[3]J.S. Geronimo, D. P. Hardin, P. R. Massopust, Fractal functions and wavelet expansions basedon several sealing functions, J. Approx. Theory, 1994, 78(3), 373-401.[4]I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf., Ser. in Appl. Math., SIAM,Philadelphia, PA, 1992, 251-253. [5]C.K. Chui, J-a. Lian, A study of orthonormal multi-wavelets, Appl. Numer. Math., 1996, 20(3),273-298.[5]X.G. Xia, A new prefilter design for discrete multiwavelet transforms, IEEE Trans. on SignalProcessing, 1998, SP-46(6), 1558-1570.[6]T.D. Bui, Chen G, Translation-invariant denoising using multiwavelets, IEEE Trans. on SignalProcesying, 1998, SP-46(12), 3414-3420.[7]J. Lebrun, M. Vetterli, Balanced multiwavelets theory and design, IEEE Trans. on Signal Pro-cessing, 1998, SP-46(4), 1119-1125.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2015) PDF downloads(427) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return