LÜ Jindong, WANG Tong, TANG Xiaobin. Semi-supervised SAR Ship Target Detection with Graph Attention Network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541-1549. doi: 10.11999/JEIT220139
Citation:
Wang Tianfu, Li Deyu, Zheng Changqiong, Zheng Yi, Ran Junguo. AUTOMATIC SEGMENTATION OF MEDICAL ULTRASONIC IMAGE USING SELF-CREATING AND ORGANIZING NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1999, 21(1): 124-127.
LÜ Jindong, WANG Tong, TANG Xiaobin. Semi-supervised SAR Ship Target Detection with Graph Attention Network[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1541-1549. doi: 10.11999/JEIT220139
Citation:
Wang Tianfu, Li Deyu, Zheng Changqiong, Zheng Yi, Ran Junguo. AUTOMATIC SEGMENTATION OF MEDICAL ULTRASONIC IMAGE USING SELF-CREATING AND ORGANIZING NEURAL NETWORK[J]. Journal of Electronics & Information Technology, 1999, 21(1): 124-127.
The automatic segmentation of ultrasonic heart image using self-creating and organizing neural network has been studied. This kind of unsupervised clustering method can search for the optimal number of output nodes automatically to get the number of textures in the image, and finish the automatic segmentation. Experimental results show that this method has significant benefits over self-organizing neural network method.
针对生存性EONs中时变业务的路由和频谱分配问题,本文提出一种基于频谱窗滑动的时变业务共享保护(Time-varying Traffic Sharing Protection based on Spectrum Window Sliding, TTSP-SWS)算法。TTSP-SWS算法的贡献在于:(1)设计考虑可用频谱块承载权重和保护频谱块共享度的保护路径代价函数,用于选择时变业务的保护路径;(2)设计基于频谱窗滑动的保护路径的频谱分配策略为时变业务分配所需频谱块;(3)根据时变业务带宽变化情况,设计基于频谱窗滑动的频谱扩展/压缩的调整策略。
2.
问题描述
EONs拓扑抽象为G(V, E, F),其中,V表示EONs节点集合,E表示光纤链路集合,F表示每条链路提供的频隙资源集合。时变业务表示为r(s, d, B, q),其中,s,d分别表示时变业务的源、目的节点,B表示时变业务所需带宽,q表示时变业务需要的保护等级。
为了验证本文所提TTSP-SWS算法的性能,本文分别对DSPRA-DPP[16], DSPRA-SBPP[16]和FMDA-RSA[17]生存性策略在图1所示的国家科学基金网(National Science Foundation Network, NSFNET)和美国网络(United States of America Network, USNET)拓扑[17]中的业务阻塞率、保护冗余度和频谱使用率性能进行仿真,其中,NSFNET拓扑具有14个节点,21条链路,USNET拓扑包含24个节点,43条链路[17],设K=3,业务间保护频隙GB=1 fs,图1的链路旁边数字表示节点之间的物理长度,单位km。其他默认仿真主要参数如表1。
Manjunath B S, Chellappa R. Unsupervised texture segmentation using Markov random models. IEEE Trans. on PAMI, 1991, PAMI-13(5): 478-482.[2]Jain A K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters[J].Pattern Recognition.1991, 24(12):1167-1186[3]Bouman C, Liu B. Multiple resolution segmentation of textured images. IEEE Trans. on PAMI, 1991, PAMI-13(2): 99-113.[4]Kohonen T. Self-Organization and Associative Memory. 2nd ed., New York: Springer-Verlag,[5]Ch.5: 119-157.[6]Choi D I, Park S H. Self-creating and organizing neural network. IEEE Trans. on NN, 1994,[7]NN-5(4): 561-575.