Zhu Zhang-ming, Zhou Duan, Yang Yin-tang, Xu Yang-yang. The Unified Fast Implementation of Elementary Functions in the Embeded Coprocessor[J]. Journal of Electronics & Information Technology, 2004, 26(2): 298-302.
Citation:
Zhu Zhang-ming, Zhou Duan, Yang Yin-tang, Xu Yang-yang. The Unified Fast Implementation of Elementary Functions in the Embeded Coprocessor[J]. Journal of Electronics & Information Technology, 2004, 26(2): 298-302.
Zhu Zhang-ming, Zhou Duan, Yang Yin-tang, Xu Yang-yang. The Unified Fast Implementation of Elementary Functions in the Embeded Coprocessor[J]. Journal of Electronics & Information Technology, 2004, 26(2): 298-302.
Citation:
Zhu Zhang-ming, Zhou Duan, Yang Yin-tang, Xu Yang-yang. The Unified Fast Implementation of Elementary Functions in the Embeded Coprocessor[J]. Journal of Electronics & Information Technology, 2004, 26(2): 298-302.
In this paper, the unified CORDIC algorithm is put forward by the improvement of iterative sequence and the presence of rational approximation. The unified algorithm of elementary functions is implemented with high speed. A coprocessor core using the improved algorithm is built by Verilog HDL. The core is very suitable for embedded application due to its small scale, high speed and simple control.
Volder J E. The CORDIC trigonometric computing technique[J].IRE Trans. on Electronics Computers.1959, EC-8(3):330-334[2]Walther J S. A unified algorithm for elementary functions. AFIPS 1971, Proc. Spring Joint Computer Conf, Boston, 1971: 379-385.[3]Rafi Nave. Implementation of transcendental on a numerics processor. Microprocessing and Microprogramming, 1983, 17(11): 221-225.[4]沈绪榜.超大规模集成系统设计.北京:科学出版社,1992:326-337.[5]Wong W F, et al.. Fast hardware-based algorithms for elementary functions computations using rectanggular multipliers. IEEE Trans. on Comput., 1994, C-43(3): 381-386.[6]International Business Machines Co. PowerPC 740.[J].PowerPC 750 RISC Processor Users Manual,Feb.1999,:-[7]Schulte M J, Stine J E, Wires K E. High-speed reciprocal approximaitons. IEEE Proc. Circuit and System, Los Angeles, 1998: 1183-1187.[8]Schulte M J, Stine J E. Symmetric bipartite tables for accurate function approximation. Proc.13th Symp. Computer Arithmetic, Chicago, 1997: 175-181.