Advanced Search
Volume 26 Issue 3
Mar.  2004
Turn off MathJax
Article Contents
Zhu Xiao-long, Zhang Xian-da. Overdetermined Blind Source Separation Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2004, 26(3): 337-343.
Citation: Zhu Xiao-long, Zhang Xian-da. Overdetermined Blind Source Separation Based on Singular Value Decomposition[J]. Journal of Electronics & Information Technology, 2004, 26(3): 337-343.

Overdetermined Blind Source Separation Based on Singular Value Decomposition

  • Received Date: 2002-08-30
  • Rev Recd Date: 2003-03-28
  • Publish Date: 2004-03-19
  • The problem of overdetermined Blind Source Separation (BSS) where there are more mixtures than sources is considered. Beginning with the Singular Value Decompo sition (SVD) of the separation matrix, a cost function is presented based on Independent Component Analysis (ICA), and then the ordinary gradient learning algorithm is developed. Secondly, resorting to the relative gradient, it is shown that the natural gradient learning algorithm for overdetermined BSS has the same form as that for usual complete BSS, which is verified by simulation results.
  • loading
  • Bell A J, Sejnowski T J. An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation.1995, 7(6):1129-1159[2]Karhunen J, Joutsensalo J. Representation and separation of signals using nonlinear pca type learning[J].Neural Networks.1994, 7(1):113-127[3]Karhunen J, Pajunen J, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches[J].Neurocomputing.1998, 22(1):5-20[4]Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36(3): 287-314.[5]Amari S I.[J].Cichocki A, Yang H H. A new learning algorithm for blind signal separation. In D.S. Touretzky, M. C. Mozer M. E. Hasselmo (Eds.), Advance in Neural Information Processing Systems, Cambridge, MA: MIT Press.1996,:-[6]Cardoso J F, Laheld B. Equivariant adaptive source separation[J].IEEE Trans. on Signal Process ing.1996, 44(12):3017-3030[7]Yang H H, Amari S I. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information[J].Neural Computation.1997, 9(5):1457-1482[8]Amari S I. Natural gradient learning for over- and under-complete bases in ICA[J].Neural Computation.1999, 11(8):1875-1883[9]Zhang L Q, Cichocki A, Amari S I. Natural gradient algorithm for blind separation of overdetermined mixture with additive noise[J].IEEE Signal Processing Letters.1999, 6(11):293-295[10]Choi S, Cichocki A, Zhang L Q, Amari S I. Approximate maximum likelihood source separation using natural gradient. 3rd IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, Taoyuan, Taiwan, 2001: 20-23.[11]Lee T W, Lewicki M S, Girolami M, Sejnowski T J. Blind source separation of more sources than mixtures using overcomplete representations[J].IEEE Signal Processing Letters.1999, 6(4):87-90[12]Lewicki M S, Sejnowski T J. Learning overcomplete representation[J].Neural Computation.2000,12(2):337-365[13]张贤达.信号处理中的线性代数.北京:科学出版社,1997,第6章.[14]Amari S I. Natural gradient works efficiently in learning[J].Neural Computation.1998, 10(2):251-276
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2356) PDF downloads(1278) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return