Advanced Search
Volume 27 Issue 8
Aug.  2005
Turn off MathJax
Article Contents
Lin Qilai, Lu Mingquan. A NEW CALIBRATION TECHNIQUE FOR THE SIX-PORT REFLECTOMETER[J]. Journal of Electronics & Information Technology, 1991, 13(1): 95-101.
Citation: Xiao Liang, Wu HuiZhong, Wei ZhiHui. The Projection Method of Fast Decreasing Functions for Multifractal Measure and Image Singularity Analysis[J]. Journal of Electronics & Information Technology, 2005, 27(8): 1182-1186.

The Projection Method of Fast Decreasing Functions for Multifractal Measure and Image Singularity Analysis

  • Received Date: 2004-03-24
  • Rev Recd Date: 2004-09-13
  • Publish Date: 2005-08-19
  • The framework for image singularity analysis based on multifractal theory is presented in this paper. The measure is defined which gives the local distribution of the gradient of the image. The exponential formalism between the projection of fast decreasing functions of the defined measure and scale is proved. According to the exponential formalism, the paper also presented an algorithm, in which the nature image can be decomposed in a serial fractal sets with different singularity exponent and fractal dimension. Finally, some basic theoretical results of the choice for the fast decreasing functions are proposed. Also an investigation of how to reconstruct the different fractal image components with derivative information contained in the different fractal sets is made. Experiments show that the multifractal formalism has significance in image singularity analysis and detection.
  • Pentland A. Fractal-based description of nature scene. IEEE Trans.on PAMI, 1984, 6(6): 661 - 674.[2]Crowvnoer R M. Fractal features in image analysis. Technical report, Missouri- Columbia Univ., 1984.[3]Vehel L J. Multifractal segmentation[J].Fractals.1994, 2(3):371-[4]Vehel L J. Introduction to the multifractal analysis of images.Fractal Image Encoding and Analysis, Fisher Y Ed. Springer Verlag, 1998, Chapter 17:331 - 401.[5]Guiheneuf B, Vehel L J. Image enhancement through multifractal analysis. Technical report, INRIA, 1996.[6]刘文予,朱耀庭,朱光喜.基于DFBIR场图像模型的纹理分割.模式识别与人工智能,1992,5(2):116-122.[7]李军,庄镇泉,高清维,李海鹰.基于多重分形的图像边缘检测算法.电路与系统学报,2001,6(3):16-19.[8]吴更石,梁德群,田原.基于分形维数的纹理图像分析.计算机学报,1999,22(10):1109-1113.[9]乔应军.信号奇异性分析[J].电子与信息学报.2001,23(11):1231-1235浏览[10]Decoster N, Roux S G, Ameodo A. A wavelet-based method for multifractal image analysis.Ⅱ.Application to synthetic multifractal rough surface. European Physical Journal B, 2000, 3(15):739 - 704.[11]Turiel A, Parga N, et al.. The multi-fractal structure of contrast changes in natural images: from sharp edges to texture[J].Neural Computation.2000, 12(4):763-[12]Turiel A, Mato G, et al.. The self-similarity properties of natural images resemble those of turbulent flows[J].Physical Review Letters.1998, 80 (5):1098-[13]Turiel A, Pozo A D. Reconstructing images from their most singular fractal manifold[J].IEEE Trans. on Image Processing.2002, 11(4):345-
  • Cited by

    Periodical cited type(5)

    1. 马彦恒,侯建强,李根,刘新海. 基于方位向信息分离的机动SAR成像算法. 电子与信息学报. 2021(02): 364-371 . 本站查看
    2. 杨磊,夏亚波,毛欣瑶,廖仙华,方澄,高洁. 基于分层贝叶斯Lasso的稀疏ISAR成像算法. 电子与信息学报. 2021(03): 623-631 . 本站查看
    3. 杨磊,张苏,黄博,盖明慧,李埔丞. 多任务协同优化学习高分辨SAR稀疏自聚焦成像算法. 电子与信息学报. 2021(09): 2711-2719 . 本站查看
    4. 马彦恒,侯建强. 机动合成孔径雷达成像研究现状与发展趋势. 兵器装备工程学报. 2019(11): 111-115 .
    5. 李大圣,吴福伟,孙俊,金林. 一种220 GHz波段太赫兹合成孔径成像雷达. 微波学报. 2018(04): 55-59 .

    Other cited types(12)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2392) PDF downloads(667) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return