Based on the hydro-dynamics energy transport model, the influence of geometrical structure parameters on hot-carrier-effect immunity in deep-submicron grooved gate PMOSFET is studied and explained in terms of device interior physics mechanism. These investigated structure parameters include effective channel length, concave corner and negative junction depth induced by change of source/drain junction depth and groove depth respectively. The research results indicate that the hot-carrier-effect is depressed deeply for grooved gate PMOSFET even in deep and super-deep-sub-micron region, and with the increase of concave corner and negative junction depth, the hot-carrier-effect immunity becomes better. It is mainly because that the structure parameters influence the electric field distribution in device and corner effect and so do the transportation of carriers.
K. Hieda, Sub-half-micrometer concave MOSFET with double LDD structure, IEEE Trans. on Electron devices, 1992, 39(3), 671-676.[2]K. Natori, I. sasaki, F. Masuoka, An analysis of the concave MOSFET, IEEE Trans. on Electron devices, 1978, 25(4), 448-456.[3]L. Jeongho, B. G. Park, A Novel 0.1m MOSFET Structure with Inverted Sidewall and Recessed Channel, IEEE Electron Device Letters, 1996, 17(4), 157-159.[4]任红霞,深亚微米槽栅CMOS器件特性研究,博士后研究工作报告,西安电子科技大学,1999年12月.[5]Technology Modeling Associates, Inc. Medici Two-Dimensional Device Simulation Program Version 2.3 Users Manual, Vol.1, Feb. 1997.