Advanced Search
Volume 28 Issue 2
Aug.  2010
Turn off MathJax
Article Contents
Du Xiao-yong, Hu Wei-dong, Yu Wen-xian. Parameter Estimation of GTD Model Based on Sparse Component Analysis[J]. Journal of Electronics & Information Technology, 2006, 28(2): 362-366.
Citation: Du Xiao-yong, Hu Wei-dong, Yu Wen-xian. Parameter Estimation of GTD Model Based on Sparse Component Analysis[J]. Journal of Electronics & Information Technology, 2006, 28(2): 362-366.

Parameter Estimation of GTD Model Based on Sparse Component Analysis

  • Received Date: 2004-08-03
  • Rev Recd Date: 2005-01-17
  • Publish Date: 2006-02-19
  • Parameter estimation of radar target scatterer plays an important role in the process of target characteristics analysis and target recognition. Based on the GTD(Geometrical Theory of Diffraction) parametric model, this paper presents a novel method which can synthetically apply the multi-band measurements in frequency domain and effectively estimate the parameters of scatterers, including location, amplitude and scattering type. The numeric results indicate that the method can effectively mine the information hidden in the model and hold the ability of supper-resolution, which provides a new way to ultra-wide-band signal processing of radar.
  • loading
  • Wehner D R. High Resolution Radar(2nd ed). Boston, MA: Artech House, 1994: 168173. .[2]Keller J B. Geometrical theory of diffraction. Journal of the Optical Society of America, 1962, 52(2): 116130. .[3]Hurst M P, Mittra R. Scattering center analysis via Pronys model. IEEE Trans. on Antennas and Propagation, 1987, 35(8): 986988. .[4]Potter L C, Chiang D M, et al.. GTD-based parametric model for radar scattering. IEEE Trans. on Antennas and Propagation, 1995, 43(10): 10581066. .[5]McClure M R, and Carin L. Matching pursuits with a wave-based dictionary. IEEE Trans. on Signal Processing, 1997, 45(12):29122927. .[6]Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Review, 2001, 43(1): 129159. .[7]Gorodnistsky I F, and Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J].IEEE Trans. on Signal Processing.1997, 45(3):600-[8]Rao B D, Engan K, et al.. Subset selection in noise based on diversity measure minimization[J].IEEE Trans. on Signal Processing.2003, 51(3):760-[9]Cuomo K M, Piou J E, Mayhan J T. Ultrawide-band coherent processing[J].IEEE Trans. on Antennas and Propagation.1999, 47(6):1094-[10]钱颂迪等(编著). 运筹学(修订版). 北京: 清华大学出版社, 1990: 183.189.[11]Natarajan B. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 1995, 24(2): 227234.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2159) PDF downloads(807) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return