Advanced Search
Volume 27 Issue 12
Dec.  2005
Turn off MathJax
Article Contents
Zhao Jun-xi. A Method of Designing FIR Fractional Delay Filters Based on Signal Models[J]. Journal of Electronics & Information Technology, 2005, 27(12): 1905-1908.
Citation: Zhao Jun-xi. A Method of Designing FIR Fractional Delay Filters Based on Signal Models[J]. Journal of Electronics & Information Technology, 2005, 27(12): 1905-1908.

A Method of Designing FIR Fractional Delay Filters Based on Signal Models

  • Received Date: 2004-09-23
  • Rev Recd Date: 2005-04-14
  • Publish Date: 2005-12-19
  • Fractional delay filters are applied to a wide range such as communications, speech processing, echo cancellation, etc. Based on the multiresolution space model of signals, a method for designing optimal fractional delay FIR filters is derived in this paper. Some numerical simulations are provided to show the effectiveness of the proposed method.
  • loading
  • Nagahara M, Yamamoto Y. Optimal design of fractional delay filters. Proceeding 42th IEEE Conference on Decision and Control, Maui, Hawaii, USA, 2003: 6539-6544.[2]Yu Shiang-Hwua, Hu Jwu-Sheng. Optimal synthesis of a fractional delay FIR filter in a reproducing kernel Hilbert space[J].IEEE Signal Processing Letters.2001, 8(6):160-162[3]Xia Xiang-Gen. Fractional delay filter design when sampling rate higher than Nyquist rate[J].Electronics Letters.1997, 33(3):199-201[4]Laakso T I, et al.. Splitting the unit delay FIR/all pass filter design[J].IEEE Signal Processing Magazine.1996, 13 (1):30-[5]崔锦泰. 小波分析导论. 西安:西安交通大学出版社, 1999, 第1 3章.[6]Djokovic I, Vaidyanathan P P. Generalized sampling theorems in multiresolution subspaces. IEEE Trans. on Signal Processing, 1997, 145(6): 583-599.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2117) PDF downloads(1903) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return