This paper presents the construction of compactly supported, interpolating or-thogonal multiwavelet based on wavelet sampling theorem. With the new interpolation orthogonal multiwavelet base, wavelet coefficients in the multiresolution representation can be directly obtained from a sampled signal. Thus the initialization of the discrete wavelet transform (prefiltering) can be simplified to the identity operator.
Walter G G. A sampling theorem for wavelet subspaces[J].IEEE Trans. on Information Theory.1992, 38(2):881-884[2]Aldroubi A.[J].Unser M. Families of wavelet transforms in connection with Shannons sampling theory and the Gabor transform, In C. K. Chui, editor, Wavelets: A tutorial in theory and applications, New York: Academic Press.1992,:-[3]Aldroubi A, Unser M. Families of multiresolution and wavelet spaces with optimal properties[J].Numer. Funct. Anal. Optim.1993, 14(5):417-446[4]Aldroubi A, Unser M. Sampling procedures in function spaces and asymptotic equivilence with Shannons sampling theory, Numer. Funct. Anal. Optim., 1994, 15(1): 1-21.[5]Unser M, Zerubia J. A generalized sampling theory without bandlimiting constraints[J].IEEE Trans. on Circuits and Systems .1998, 45(8):959-969[6]Sweldens W, Piessens R. Wavelet sampling techniques, In 1993 Proceedings of the Statistical Computing Section, American Statistical Association, 1993: 20-29.[7]Zhou D X. Interpolatory orthogonal multiwavelets and refinable functions[J].IEEE Trans. on Signal Processing.2002, 50(3):520-527[8]Xia X G, Suter B W. Vector-valued wavelets and vector filter banks[J].IEEE Trans. on Signal Processing.1996, 44(3):508-518[9]Xia X G, Zhang Z. On sampling theorem, wavelets and wavelet transform[J].IEEE Trans. on Signal Processing.1993, 41(12):3524-3535