Yang Guangzheng, Yang Xiangyu, Xu Lijuan. THE GROUP CORRELATION PROPERTIES OF BINARY SEQUENCES[J]. Journal of Electronics & Information Technology, 1997, 19(2): 158-165.
Citation:
Yang Guangzheng, Yang Xiangyu, Xu Lijuan. THE GROUP CORRELATION PROPERTIES OF BINARY SEQUENCES[J]. Journal of Electronics & Information Technology, 1997, 19(2): 158-165.
Yang Guangzheng, Yang Xiangyu, Xu Lijuan. THE GROUP CORRELATION PROPERTIES OF BINARY SEQUENCES[J]. Journal of Electronics & Information Technology, 1997, 19(2): 158-165.
Citation:
Yang Guangzheng, Yang Xiangyu, Xu Lijuan. THE GROUP CORRELATION PROPERTIES OF BINARY SEQUENCES[J]. Journal of Electronics & Information Technology, 1997, 19(2): 158-165.
The group correlation properties of binary sequences is studied. And a conclusion is drawn that not only the group correlation function of a binary sequence itself is ideal, but also that of some of its subsets, when code length N is even, is ideal. Finally a general formula of the group correlation function of a binary sequence set is derived.
Miller W Jr. Symmetry Groups and Their Application. New York: Academic Press, 1992, Chapter 1.[2]杨光正.脉压码时间旁共特性的研究.电子科学学刊,1994, 16(1): 40-47.[3]杨光正.Barker码的一些结论和二元码的优选问题.电子科学学刊,1995, 17(1): 35-41.[4]Frank R L. Polyphase codes with good nonperodic correlation properties. IEEE Trans. on IT, 1963, IT-9(1): 43-46.[5]Lewis B L, Kretshmer F F. Linear frequency modulation derived polyphase pulse compression codes. IEEE Trans, on AES, 1982, AES-18(5): 637-841.[6]Golay M J E. Complementary series. IRE Trans., on IT, 1961, IT-7(4): 82-87.