Citation: | Jia Qian, Yi Ben-Shun, Xiao Jin-Sheng. Image Interpolation Algorithm Based on Structure Component Bidirectional Diffusion[J]. Journal of Electronics & Information Technology, 2014, 36(11): 2541-2548. doi: 10.3724/SP.J.1146.2014.00255 |
陈瑶, 孙兴波, 黄祥, 等. 一种消除锯齿的图像放大算法[J]. 四川理工学院学报(自然科学版), 2013, 26(3): 35-37.
Chen Yao, Sun Xing-bo, Huang Xiang, et al.. An Algorithm of anti-aliased image magnification[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2013, 26(3): 35-37.
|
陈利平. 自适应 Catmull-Rom 样条图像放大[J]. 计算机辅助设计与图形学学报, 2013, 25(2): 200-207.
Chen Li-ping. Image amplification based on adaptive Cammull-Rom interpolation[J]. Journal of Computer-Aided Design & Computer Graphice, 2013, 25(2): 200-207.
|
席志红, 海涛, 肖易寒. 基于混合非线性偏微分方程扩散的可逆图像放大[J]. 系统工程与电子技术, 2013, 35(5): 1098-1103.
Xi Z H, Hai T, and Xiao Y H. Reversible image interpolation based on hybrid anisotropic partial differential equation diffusion[J]. Systems Engineering and Electronics, 2013, 35(5): 1098-1103.
|
Aly H and Dubois E. Image up-sampling using total-variation regularization with a new observation model[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659.
|
Babacan S D, Molina R, and Katsaggelos A K. Variational Bayesian super resolution[J]. IEEE Transactions on Image Processing, 2011, 20(4): 984-999.
|
Hiroyuki T, Farsiu S, and Milanfar P. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16(2): 349-366.
|
周鑫, 胡访宇, 朱高. 基于核回归的正则化超分辨率重建算法[J]. 电子测量技术, 2012, 35(3): 62-68.
Zhou X, Hu F Y, and Zhu G. Super-resolution reconstruction based on adaptive kernel regression[J]. Electronic Measurement Technology, 2012, 35(3): 62-68.
|
李家德, 张叶, 贾平. 采用非局部均值的超分辨率重构[J]. 光学精密工程, 2013, 21(6): 1576-1585.
Li Jia-de, Zhang Ye, and Jia Ping. Super-resolution reconstruction using nonlocal means[J]. Optics and Precision Engineering, 2013, 21(6): 1576-1585.
|
冯象初, 姜东焕, 徐光宝. 基于变分和小波变换的图像放大算法[J]. 计算机学报, 2008, 31(2): 340-345.
Feng X C, Jiang D H, and Xu G B. Combining variation and wavelet transform for image zooming[J]. Chinese Journal of Computers, 2008, 31(2): 340-345.
|
Lu X, Yuan Y, and Yan P. Image super-resolution via double sparsity regularized manifold learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(12): 2022-2033.
|
Yang J C, Wright J, Huang T S, et al.. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
|
孙士保, 段建辉. 一种基于边缘梯度的图像插值算法[J]. 计算机工程, 2013, 39(8): 239-242.
Sun Shi-bao and Duan Jian-hui. An image interpolation algorithm based on edge gradient[J]. Computer Engineering, 2013, 39(8): 239-242.
|
Li X and Orchard M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527.
|
Getreuer P. Contour stencils: total variation along curves for adaptive image interpolation[J]. SIAM Journal on Imaging Sciences, 2011, 4(3): 954-979.
|
Sun J, Sun J, Xu Z B, et al.. Image super-resolution using gradient profile prior[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, Anchorage, USA, 2008, 1: 2471-2478.
|
计忠平, 方美娥, 王毅刚, 等. 保持边缘特征和增强对比度的图像缩放算法[J]. 中国图象图形学报, 2012, 17(2): 178-182.
Ji Z P, Fang M E, Wang Y G, et al.. Edge-preserving and contrast-enhance image scaling[J]. Journal of Image and Graphi, 2012, 17(2): 178-182.
|
杜月林, 韩小萱. 基于边缘检测的图像超分辨率重建研究[J]. 国外电子测量技术, 2012, 31(10): 22-26.
Du Yue-lin and Han Xiao-xuan. The research of super-resolution image reconstruction based on edge detection[J]. Foreign Electronic Measurement Technology, 2012, 31(10): 22-26.
|
Osher S J and Rudin L I. Feature oriented image enhancement using shock filters[J]. Journal on Numerical Analysis, 1990, 27(4): 919-940.
|
Alvarez L and Mazorra M. Signal and image restoration using shock filters and anisotropic diffusion[J]. Journal on Numerical Analysis, 1994, 31(2): 590-605.
|
Starck J L, Moudden Y, Bobin J , et al.. Morphological component analysis[J]. Proceedings of the SPIE, 2005, 5914: 209-223.
|
肖进胜, 冯慧, 易本顺, 等. 半线性抛物型微分包含的有限差分法[J]. 武汉大学学报(理学版), 2006, 52(3): 262-266.
Xiao Jin-sheng, Feng Hui, Yi Ben-shun, et al.. Finite difference method for semi linear parabolic differential inclusions[J]. Journal of Wuhan Vniversity (Natural Science Edition), 2006, 52(3): 262-266.
|