Advanced Search
Volume 36 Issue 7
Jul.  2014
Turn off MathJax
Article Contents
Luo Yan, Xiang Jun, Yan Ming-Jun, Hou Jian-Hua. Online Target Tracking Based on Mulitiple Instance Learning and Random Ferns Detection[J]. Journal of Electronics & Information Technology, 2014, 36(7): 1605-1611. doi: 10.3724/SP.J.1146.2013.01358
Citation: Luo Yan, Xiang Jun, Yan Ming-Jun, Hou Jian-Hua. Online Target Tracking Based on Mulitiple Instance Learning and Random Ferns Detection[J]. Journal of Electronics & Information Technology, 2014, 36(7): 1605-1611. doi: 10.3724/SP.J.1146.2013.01358

Online Target Tracking Based on Mulitiple Instance Learning and Random Ferns Detection

doi: 10.3724/SP.J.1146.2013.01358
  • Received Date: 2013-09-05
  • Rev Recd Date: 2013-12-24
  • Publish Date: 2014-07-19
  • Recently, a class of tracking techniques called tracking by detection receive much attention in computer vision. These methods train a discriminative classsifier to separate the object from the background. The classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker lead to incorrectly labeled training examples, which degrade the classifier and cause drift. In this paper, an effective algorithm is proposed to overcome the target drift. It takes the framework of tracking by detection. Median Flow (MF) is used as a tracker to improve the reliability of the tracking point; the detector is constituted with several weak classifiers of random ferns to cascade, and it is updated with online Multiple Instance Learning (MIL). Finally the detector and tracking results are integrated to get the target location. Experiments on a number of challenging video clips show that the proposed method outperforms some state-of-the-art tracking methods, especially for fast motion and drifts.
  • Cited by

    Periodical cited type(6)

    1. 孙辉,史玉龙,张健一,王蕊,王羽玥. 基于高分辨率类激活映射算法的弱监督目标实时检测. 电子与信息学报. 2024(03): 1051-1059 . 本站查看
    2. Wei-Ping Ma,Wen-Xin Li,Peng-Xia Cao. Binocular Vision Object Positioning Method for Robots Based on Coarse-fine Stereo Matching. International Journal of Automation and Computing. 2020(04): 562-571 .
    3. 才华,陈广秋,刘广文,程帅,于化东. 遮挡环境下多示例学习分块目标跟踪. 吉林大学学报(工学版). 2017(01): 281-287 .
    4. 曹东,付承毓,金钢. 基于机器学习的目标跟踪算法研究综述. 计算机科学. 2016(12): 1-7+35 .
    5. 王俊超,张东波,秦海,颜霜. 尺度自适应在线鲁棒目标跟踪. 计算机应用研究. 2016(04): 1245-1248+1261 .
    6. 罗会兰,单顺勇,孔繁胜. 融合多特征的加权分布跟踪. 模式识别与人工智能. 2016(02): 131-142 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2394) PDF downloads(747) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return