Advanced Search
Volume 34 Issue 7
Aug.  2012
Turn off MathJax
Article Contents
Li Xiao-Yan, He Hong-Jie, Yin Zhong-Ke, Chen Fan. Image Super-resolution Reconstruction Based on Kernel Partial Least Squares and Weighted Boosting[J]. Journal of Electronics & Information Technology, 2012, 34(7): 1525-1530. doi: 10.3724/SP.J.1146.2011.01191
Citation: Li Xiao-Yan, He Hong-Jie, Yin Zhong-Ke, Chen Fan. Image Super-resolution Reconstruction Based on Kernel Partial Least Squares and Weighted Boosting[J]. Journal of Electronics & Information Technology, 2012, 34(7): 1525-1530. doi: 10.3724/SP.J.1146.2011.01191

Image Super-resolution Reconstruction Based on Kernel Partial Least Squares and Weighted Boosting

doi: 10.3724/SP.J.1146.2011.01191
  • Received Date: 2011-11-16
  • Rev Recd Date: 2012-03-26
  • Publish Date: 2012-07-19
  • The Kernel Partial Least Squares (KPLS) method has a large calculation since it uses all the principal components for each image block. To consider reconstruction quality and time efficiency, a weighted Boosting based algorithm is proposed in this paper. To choose adaptively the best number of principal components for each image block, the estimator in KPLS prediction model is performed for compensation. The weight coefficient expression of compensation is deduced. The reconstruction effects in different Boosting threshold are discussed. With an appropriate threshold, the chosen best number of principal components can better satisfy KPLS regression model accuracy. Experimental results demonstrate that the proposed method outperforms the conventional methods in super-resolution reconstructed quality.
  • loading
  • Park S C, Park M K, and Kang M G. Super-resolution image reconstruction: a technical overview[J].IEEE Signal Processing Magazine.2003, 20(3):21-36[2]杨浩, 高建坡, 吴镇扬. 一种新的图像配准和超分辨率重建算法[J].电子与信息学报.2008, 30(1):168-171浏览[3]Yang Hao, Gao Jian-po, and Wu Zhen-yang. A new algorithm for image registration and super-resolution reconstruction[J].Journal of Electronics Information Technology.2008, 30(1):168-171[5]Glasner D.[J].Bagon S, and Irani M. Super-resolution from a single image[C]. IEEE 12th International Conference on Computer Vision, Kyoto, Japan.2009,:-[6]乔建苹, 刘琚, 闫华, 等. 基于Log-WT的人脸图像超分辨率重建[J].电子与信息学报.2008, 30(6):1276-1280浏览[7]Qiao Jian-ping, Liu Ju, Yan Hua, et al.. A Log-WT based super-resolution algorithm[J].Journal of Electronics Information Technology.2008, 30(6):1276-1280[8]Chan T M, Zhang J, Pu J, et al.. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J].Pattern Recognition Letters.2009, 30(5):494-502[9]Yang J, Wright J, Huang T, et al.. Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing.2010, 19(11):2861-2873[10]李民, 李世华, 李小文, 等. 非局部联合稀疏近似的超分辨率重建算法[J].电子与信息学报.2011, 33(6):1407-1412浏览[11]Li Min, Li Shi-hua, Li Xiao-wen, et al.. Super-resolution reconstruction algorithm based on non-local simultaneous sparse approximation[J].Journal of Electronics Information Technology.2011, 33(6):1407-1412[12]胡宇, 赵保军, 沈庭芝, 等. 基于偏最小二乘的人脸超分辨率重构[J]. 北京理工大学学报, 2010, 30(9): 1098-1101.[14]Wu W, Liu Z, and He X. Learning-based super resolution using kernel partial least squares[J].Image and Vision Computing.2011, 29(6):394-406[15]王惠文, 吴载斌, 孟洁. 偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006: 97-104, 215-225.[17]Rosipal R and Krmer N. Overview and recent advances in partial least squares[J].Lecture Notes in Computer Science.2006, 3940:34-51[18]Chen S, Wang J, Ouyang Y, et al.. Boosting part-sense multi-feature learners toward effective object detection[J].Computer Vision and Image Understanding.2011, 115(3):364-374[19]Chang C C. A boosting approach for supervised Mahalanobis distance metric learning[J].Pattern Recognition.2012, 45(2):844-862[20]Suresh S, Sundararajan N, and Saratchandran P. Risk- sensitive loss functions for sparse multi-category classification problems[J].Information Sciences.2008, 178(15):2621-2638[21]Gao X, Zhang K, Tao D, et al.. Joint learning for single image super-resolution via coupled constraint[J].IEEE Transactions on Image Processing.2012, 21(2):469-480[22]Wang Z, Bovik A C, Sheikh H R, et al.. Image quality assessment: from error measurement to structural similarity[J].IEEE Transactions on Image Processing.2004, 13(4):600-612
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2657) PDF downloads(947) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return