Advanced Search
Volume 34 Issue 2
Mar.  2012
Turn off MathJax
Article Contents
Song Xiang-Fa, Jiao Li-Cheng. Classification of Hyperspectral Remote Sensing Image Based on Sparse Representation and Spectral Information[J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272. doi: 10.3724/SP.J.1146.2011.00540
Citation: Song Xiang-Fa, Jiao Li-Cheng. Classification of Hyperspectral Remote Sensing Image Based on Sparse Representation and Spectral Information[J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272. doi: 10.3724/SP.J.1146.2011.00540

Classification of Hyperspectral Remote Sensing Image Based on Sparse Representation and Spectral Information

doi: 10.3724/SP.J.1146.2011.00540
  • Received Date: 2011-06-02
  • Rev Recd Date: 2011-10-31
  • Publish Date: 2012-02-19
  • This paper presents a novel classification algorithm of hyperspectral remote sensing image based on sparse representation and spectral information. First, a learning dictionary is obtained based on hyperspectral remote sensing image data set, and then the sparse coefficient of each pixel is calculated according to the learning dictionary. As a result, sparse representation feature is obtained. Finally, random forests are respectively constructed based on sparse representation feature and spectral information, and the classification result is decided by voting strategy. Experiments on AVIRIS hyperspectral remote sensing image justify the effectiveness of the algorithm. The experimental results indicate that the proposed method has better performance than methods based on spectral and sparse representation respectively, and has a higher overall accuracy and Kappa coefficient.
  • loading
  • Plaza A, Benediktsson J A, Boardman J, et al.. Recent advances in techniques for hyperspectral image processing [J]. Remote Sensing of Environment, 2009, 113(9): 110-122.[2] 邸韡, 潘泉, 赵永强, 等. 高光谱图像波段子集模糊积分融合异常检测[J]. 电子与信息学报, 2008, 30(2): 267-271.Di Wei, Pan Quan, Zhao Yong-qiang, et al.. Anomaly target detection in hyperspectral imagery based on band subset fusion by fuzzy integral[J]. Journal of Electronics Information Technology, 2008, 30(2): 267-271.[3] 宋娟, 吴成柯, 张静, 等. 基于分类和陪集码的高光谱图像无损压缩[J]. 电子与信息学报, 2011, 33(1): 231-234.Song Juan, Wu Cheng-ke, Zhang Jing, et al.. Lossless compression of hyperspectral images based on classification and coset coding [J]. Journal of Electronics Information Technology, 2011, 33(1): 231-234.[4] Chan J C W and Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.[5] Ham J, Chen Y, Crawford M, et al.. Investigation of the random forest framework for classification of hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 492-501.[6] Shahshahani B M and Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1087-1095.[7] Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.[8] Olshausen B A and Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature, 1996, 381(6583): 607-609.[9] Iordache M D, Dias J M B, and Plaza A. Sparse unmixing of hyperspectral data. [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2014-2039.[10] Wright J, Ma Y, Mairal J, et al.. Sparse representations for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.[11] 余慧敏, 方广有. 压缩感知理论在探地雷达三维成像中的应用[J]. 电子与信息学报, 2010, 32(1): 12-16.Yu Hui-min and Fang Guang-you. Research on compressive sensing based 3D imaging method applied to ground penetrating radar [J]. Journal of Electronics Information Technology, 2010, 32(1): 12-16.[12] 屈乐乐, 方广有, 杨天虹. 压缩感知理论在频率步进探地雷达偏移成像中的应用[J]. 电子与信息学报, 2011, 33(1): 21-26.Qu Le-le, Fang Guang-you, and Yang Tian-hong. The application of compressed sensing to stepped-frequency ground penetrating radar migration imaging [J]. Journal of Electronics Information Technology, 2011, 33(1): 21-26.[13] 孙玉宝, 韦志辉, 吴敏, 等. 稀疏性正则化的图像泊松去噪算法[J]. 电子学报, 2011, 39(2): 285-290.Sun Yu-bao, Wei Zhi-hui, Wu Min, et al.. Image poisson denoising using sparse representations [J]. Acta Elcetronica Sinica, 2011, 39(2): 285-290.[14] Raina R, Battle A, Lee H, et al.. Self-taught learning: transfer learning from unlabeled data[C]. International Conference on Machine Learning, Corvallis, 2007: 759-766. [15] Qiao Li-shan, Chen Song-can, and Tan Xiao-yang. Sparsity preserving projection with applications to face recognition [J]. Pattern Recognition, 2010, 43(1): 331-341.[16] Han Ya-hong, Wu Fei, Zhuang Yue-ting, et al.. Multi-label transfer learning with sparse representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(8): 1110-1121.[17] Aharon M, Elad M, and Bruckstein A. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.[18] Mairal J, Bach F, Ponce J, et al.. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.[19] 童庆禧, 张兵, 郑兰芬. 高光谱遙感: 原理、技术与应用[M]. 北京: 高等教育出版社, 2006: 262-272.Tong Qing-xi, Zhang Bing, and Zheng Lan-fen. Hyperspectral Remote Sensing Theory, Technology and Applications [M]. Beijing: Higer Education Press, 2006: 262-272.[20] Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4791) PDF downloads(3335) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return