Advanced Search
Volume 33 Issue 4
May  2011
Turn off MathJax
Article Contents
Lou Song-Jiang, Zhang Guo-Yin. Null Space Locality Preserving Discriminant Intrinsicface[J]. Journal of Electronics & Information Technology, 2011, 33(4): 962-966. doi: 10.3724/SP.J.1146.2010.00787
Citation: Lou Song-Jiang, Zhang Guo-Yin. Null Space Locality Preserving Discriminant Intrinsicface[J]. Journal of Electronics & Information Technology, 2011, 33(4): 962-966. doi: 10.3724/SP.J.1146.2010.00787

Null Space Locality Preserving Discriminant Intrinsicface

doi: 10.3724/SP.J.1146.2010.00787
  • Received Date: 2010-07-28
  • Rev Recd Date: 2010-10-25
  • Publish Date: 2011-04-19
  • Based on the image differences, Intrinsicface is proposed, which divides the face image into three parts, common facial differences, intrapersonal differences and individual differences, and shows desirable performance. But it does not consider the manifold structure and suffers from the singular problem, which is also called Small Sample Size (SSS) problem. To solve these problems, Null Space Locality Preserving Discriminant Intrinsicface (NSLPDI) is proposed, which makes full use of intrapersonal differences and individual differences and employs the idea of manifold learning so that the similarity in the intra-class is preserved while the separability of samples from different classes is enlarged by discriminant criterion. The optimal feature vectors are extracted from the null space of intrapersonal locality preserving difference scatter matrix, which avoids the singularity and the SSS problem is solved. Experiments on face recognition demonstrate the correctness and effectiveness of the proposed algorithm.
  • loading
  • Turk M and Pentland A. Eigenfaces for recognition[J].Cognitive Neurosci.1991, 3(1):71-86[2]Belhumeur P N and Kriegman D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection [J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1997, 19:711-720[3]Tenenbaum J B, De Silva V, and Langford J C. A global geometric framework for nonlinear dimensionality reduction [J].Science.2000, 290:2319-2323[4]Rowies S and Saul L. Nonliear dimensionality reduction by locally linear embedding[J].Science.2000, 290:2323-2326[5]Belkin M and Niyogo P. Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation.2003, 15(6):1373-1396[6]He X, Niyogi P, and Han J. Face recognition using laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2005, 27(3):328-340[8]Yang J, Zhang D, and Yang J Y, et al.. Globally maximizing, locally minimizing: unsupervised discriminant projection with application to face and palm biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2007, 29(4):650-664[11]Gao Quan-xue, Xu Hui, Li Yi-ying, and Xie De-yan. Two dimensional supervised local similarity and diversity projections[J].Pattern Recognition.2010, 43(10):3359-3363[12]Li Bo, Wang Chao, and Huang De-shuang. Supervised feature extraction based on orthogonal discriminant projection [J].Neurocomputing.2009, 73(1-3):191-196[14]Yang Li-ping, Gong Wei-guo, and Gu Xiao-hua, et al.. Null space discriminant locality preserving projections for face recognition[J].Neurocomputing.2008, 71(16-18):3644-3649[15]林玉娥, 顾国昌等. 适用于小样本问题的具有类内保持的正交特征提取算法[J]. 自动化学报. 2010, 36(5): 644-649.[16]Lin Yu-e and Gu Guo-chang, et al.. An Orthogonal feature extraction method based on the within-class preserving for small sample size problem[J].Acta Automatica Sinica.2010, 36(5):644-649[17]Xu Yong, Zhong Ai-ni, Yang Jian, and Zhang David. LPP solution schemes for use with face recognition[J].Pattern Recognition.2010, 43(12):4165-4176[19]Yang Li-ping, Gong Wei-guo, Gu Xiao-hua, Li Wei-hong, and Du Xing. Complete discriminant locality preserving projections for face recognition[J].Journal of Software.2010, 21(6):1277-1286[20]Hong Z Q and Yang J Y. Optimal discriminant plane for a small number of samples and design method of classifier on the plane [J].Pattern Recognition.1991, 24(4):317-324[21]Li H, Jiang T, and Zhang K. Efficient and robust feature extraction by maximum margin criterion[J].IEEE Transactions on Neural Networks.2006, 17(1):157-165[22]Tao Yu-ting and Yang Jian. Quotient vsdifference: comparison between the two discriminant criteria [J].. Neurocomputing.2010, 73(10-12):1808-1817[23]Yu Hua, Yang Jie. A direct LDA algorithm for high-dimensional data- with application to face recognition [J].Pattern Recognition.2001, 34(10):2067-2070
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3686) PDF downloads(968) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return