Advanced Search
Volume 33 Issue 4
May  2011
Turn off MathJax
Article Contents
Sun Kang, Jin Gang, Zhu Xiao-Hua. The Long-range Dependence Characteristic Analysis of Sea Clutter Based on the Semivariogram Function[J]. Journal of Electronics & Information Technology, 2012, 34(10): 2466-2469. doi: 10.3724/SP.J.1146.2011.01341
Citation: Lv Hui , Feng Da-Zheng, He Jie, Xiang Cong. Two-stage Reduced-dimension Clutter Suppression Method for Airborne MIMO Radar[J]. Journal of Electronics & Information Technology, 2011, 33(4): 805-809. doi: 10.3724/SP.J.1146.2010.00704

Two-stage Reduced-dimension Clutter Suppression Method for Airborne MIMO Radar

doi: 10.3724/SP.J.1146.2010.00704
  • Received Date: 2010-07-06
  • Rev Recd Date: 2010-09-17
  • Publish Date: 2011-04-19
  • A computationally efficient Space-Time Adaptive Processing (STAP) method for clutter suppression in airborne MIMO radar is proposed. Firstly, the Doppler filtering is performed to reduce the data dimension in temporal domain. Secondly, the weight vector of the two-dimensional transmit-receive beamformer is expressed as the Kronecker product of two short weight vectors for which a bi-quadratic cost function is constructed to achieve dimension reduction in spatial domain. Finally, a bi-iterative algorithm for minimizing the bi-quadratic cost function is utilized to optimize iteratively the two weights. Simulation results indicate that the proposed method has fast convergence rate and particularly for short data records, it provides substantially better clutter suppression performance and can be carried out at a smaller computational cost than the mDT method.
  • Brennan L E and Reed I S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(2): 237-252.[2] Bliss D W and Forsythe K W. Multiple-input multiple- output (MIMO) radar and imaging: degrees of freedom and resolution[C]. Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems, Computers, Monterey, USA, 2003: 54-59.[3] Chen C Y and Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 623-635.[4] Mecca V F, Ramakrishnan D, and Krolik J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. Proceedings of the 4th IEEE Workshop on Sensor Array and Multichannel Signal Processing, Waltham, USA, 2006: 249-253.[5] Wang G H and Lu Y L. Clutter rank of MIMO radar with a special class of waveforms[C]. Proceedings of the International Waveform Diversity Design Conference, Kissimmee, USA, 2009: 108-112.[6] Marcos S. Range recursive space time adaptive processing (STAP) for MIMO airborne radar[C]. Proceedings of the 17th European Signal Processing Conference, Glasgow, Scotland, 2009: 592-596.[7] 王鞠庭, 江胜利, 何劲, 等. 机载MIMO雷达广义最大似然检测器[J]. 电子与信息学报, 2009, 31(6): 1315-1318.Wang Ju-ting, Jiang Sheng-li, and He Jin, et al.. Generalized likelihood ratio detector for airborne MIMO radars[J]. Journal of Electronics Information Technology, 2009, 31(6): 1315-1318.[8] 陈金立, 顾红, 苏卫民. 一种双基地MIMO雷达快速多目标定位方法[J]. 电子与信息学报, 2009, 31(7): 1664-1668.Chen Jin-li , Gu Hong, and Su Wei-min. A method for fast multi-target localization in bistatic MIMO radar system[J]. Journal of Electronics Information Technology, 2009, 31(7): 1664-1668.[9] Bao Zheng, Wu Shun-jun, and Liao Gui-sheng, et al.. Review of reduced rank space-time adaptive processing for airborne radars[C]. Proceedings of the International Conference on Radar, Beijing, China, 1996: 766-769.[10] Dippetro R C. Extended factored space-time processing forairborne radar system[C]. Proceedings of the 26th IEEE Asilomar Conference on Signals, Systems and Computers, Monterey, USA, 1992: 425-430.[11] 王永良, 彭应宁. 空时自适应信号处理 [M]. 北京: 清华大学出版社, 2000: 58-62.[12] Reed I S, Mallett J D, and Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.[13] Stoica P and Seln Y. Cyclic minimizers, majorization techniques, and expectation-maximization algorithm: a refresher[J]. IEEE Signal Processing Magazine, 2004, 21(1): 112-114.[14] Liu B, He Z S, Zeng J K, and Liu B Y. Polyphase orthogonal code design for MIMO radar systems[C]. Proceedings of the International conference on radar, Shanghai, China, 2006: 113-116.
  • Cited by

    Periodical cited type(13)

    1. 刘迪,朱敏,武岩波. 水下传感器网络移动节点时间同步算法研究. 网络新媒体技术. 2022(04): 35-41+51 .
    2. 刘广钟,田纪尧,孔维全. 基于节点测速的水下传感器时钟同步迭代算法. 计算机工程与设计. 2020(06): 1522-1527 .
    3. 刘迪,武岩波,朱敏,李栋. 水声传感器网络中时钟漂移率跟踪方法. 声学技术. 2020(04): 406-412 .
    4. 郭瑛,王进新,郑连振. 多信源海洋物联网定位. 郑州大学学报(理学版). 2019(04): 95-101 .
    5. 金彦亮,姚彬,张晓帅. 结合Chirp信号的单向广播机制水下无线传感器网络时间同步算法. 上海大学学报(自然科学版). 2018(06): 877-887 .
    6. 郭瑛,王进新. 海洋传感器网络参数自适应时间同步算法. 通信学报. 2017(S1): 67-72 .
    7. 王建平,王全蕊,朱凤杰,陈伟,韩亚峰. 基于MIMO分集和复用折衷的水下传感器网络节能算法. 微电子学与计算机. 2017(03): 136-140 .
    8. 陈西宏,刘赞,刘继业,刘进,张群. 低仰角下对流层散射斜延迟估计方法. 电子与信息学报. 2016(02): 408-412 . 本站查看
    9. 张红军,张亚利. UWSNs中基于深度调整的混合型路由协议. 计算机工程与设计. 2016(11): 2898-2903+2938 .
    10. 钟伟雄,胡玉鹏. 水下无线传感网深度调整的混合型路由协议. 实验室研究与探索. 2016(07): 85-90 .
    11. 孔德川,王建平,陈伟. 基于蚁群算法的水声传感器网络信号检测方法. 仪表技术与传感器. 2016(08): 100-104 .
    12. 洪昌建,吴伟杰,唐平鹏. 动态分层的水下传感器网络分簇路由算法. 电子与信息学报. 2015(06): 1291-1297 . 本站查看
    13. 孙海文,欧阳中辉,杜亚杰. 载波相位DGPS标校系统时间同步设计与仿真. 海军航空工程学院学报. 2015(04): 336-340 .

    Other cited types(10)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3875) PDF downloads(1082) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return