[1] Goyal V K. Multiple description coding: compression meets the network [J].IEEE Signal Processing Magazine.2001, 18(5):74-93 [2] Donoho D. Compressed sensing [J].IEEE Transactions on Information Theory.2006, 52(4):1289-1306 [3] Cands E and Wakin M. An introduction to compressive sampling: a sensing/sampling paradigm that goes against the common knowledge in data acquisition [J].IEEE Signal Processing Magazine.2008, 25(2):21-30 [4] Baraniuk R. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. [5] 刘丹华, 石光明, 周佳社, 等. 基于Compressed Sensing框架的图像多描述编码方法[J]. 红外与毫米波学报, 2009, 28(4): 298-302. Liu Dan-hua, Shi Guang-ming, and Zhou Jia-she, et al.. New method of multiple description coding for image based on compressed sensing [J].Journal of Infrared and Millimeter. Waves.2009, 28(4):298-302 [6] Donoho D. For most large underdetermined systems of linear equations, the minimal ell-1 norm near-solution approximates the sparsest near-solution[J].Communications on Pure and Applied Mathematics.2006, 59(7):907-934 [7] Cands E and Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions [J].Foundation of Computational Mathematics.2006, 6(2):227-254 [8] Gan L. Block compressed sensing of natural images [C]. The 15th International Conference on Digital Signal Processing, Cardiff, UK, 2007: 403-406. [9] Duarte M, Davenport M, and Takhar D, et al.. Single-pixel imaging via compressive sampling [J].IEEE Signal Processing Magazine.2008, 25(2):83-91 [10] Donoho D, Tsaig Y, and Drori I, et al.. Sparse solution of underdetermined linear equations by stage wise orthogonal matching pursuit [R]. Tech. Report. 2006, Stanford, Department of Statistics, 2006.
|