Advanced Search
Volume 33 Issue 2
Mar.  2011
Turn off MathJax
Article Contents
Liu Bing, Tao Wei, Dou Gao-Qi, Gao Jun. Weighted Symbol-flipping Decoding for Nonbinary LDPC Codes Based on a New Stopping Criterion[J]. Journal of Electronics & Information Technology, 2011, 33(2): 309-314. doi: 10.3724/SP.J.1146.2010.00257
Citation: Liu Bing, Tao Wei, Dou Gao-Qi, Gao Jun. Weighted Symbol-flipping Decoding for Nonbinary LDPC Codes Based on a New Stopping Criterion[J]. Journal of Electronics & Information Technology, 2011, 33(2): 309-314. doi: 10.3724/SP.J.1146.2010.00257

Weighted Symbol-flipping Decoding for Nonbinary LDPC Codes Based on a New Stopping Criterion

doi: 10.3724/SP.J.1146.2010.00257
  • Received Date: 2010-03-18
  • Rev Recd Date: 2010-10-25
  • Publish Date: 2011-02-19
  • To reduce decoding computational complexity of nonbinary Low-Density Parity-Check (LDPC) codes, a weighted symbol-flipping decoding algorithm based on a new criterion is proposed. The flipped symbol is determined according to the symbol flipping function and the reliabilities of the received bits in the algorithm. The decoding procedure would be stopped in advance by analyzing the trend of the number of unsatisfied checks. The simulation results show that the new algorithm can tremendously reduces the average number of required iterations with negligible performance degradation compared to the symbol-flipping decoding algorithm. Thus it achieves an appealing tradeoff between performance and complexity.
  • loading
  • [1] Gallager R G. Low-Density Parity-Check Codes[J].IRE Transactions on Information Theory.1962, 8(1):21-28 [2] Mackay D J C and Neal R M. Near Shannon limit performance of low-density parity-check codes[J].Electronics Letters.1996, 32(18):1645-1646 [3] 陈俊斌. 多进制LDPC码与RS码的性能比较研究[D]. [硕士论文], 厦门大学, 2006. [4] Davey M C and MacKay D. Low-density parity check codes over GF(q)[J].IEEE Communications Letters.1998, 2(6):165-167 [5] Wymeersch H, Steendam H, and Moeneclaey M. Log-domain decoding of LDPC codes over GF(q)[C]. IEEE International Conference on Communications, Paris, France, 2004: 772-776. [6] Barnault L and Declercq D. Fast decoding algorithm for LDPC over GF(2q)[C]. IEEE Information Theory Workshop, Paris, France, 2003: 70-73. [7] Song H and Cruz J R. Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording[J].IEEE Transactions on Magnetics.2003, 39(2):1081-1087 [8] Declercq D and Fossorier M. Decoding algorithms for nonbinary LDPC codes over GF(q)[J].IEEE Transactions on Communications.2007, 55(4):633-643 [9] Sun Y, Zhang Y, Hu J, and Zhang Z. FPGA implementation of nonbinary quasi-cyclic LDPC decoder based on EMS algorithm[C]. International Conference on Communications, Circuits and Systems, Milpitas, California, 2009: 1061-1065. [10] Liu B, Gao J, Dou G, and Tao W. Weighted symbol-flipping decoding for nonbinary LDPC codes[C]. 2nd International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, China, 2010: 223-226. [11] Zhou W, Men A, and Quan Z. Early stopping for the iterative decoding for Q-LDPC[J].The Journal of China Universities of Posts and Telecommunications.2008, 15(1):28-31 [12] Chen X, Men A, and Zhou W. A stopping criterion for nonbinary LDPC codes over GF(q)[C]. 11th IEEE Singapore International Conference on Communication Systems, Guangzhou, China, 2008: 1312-1315. [13] Zeng L, Lan L, Tai Y Y, Song S, Lin S, and Abdel-Ghaffar K. Constructions of nonbinary quasi-cyclic LDPC codes: a finite field approach[J].IEEE Transactions on Communications.2008, 56(4):545-554 [14] Song S, Zhou B, Lin S, and Abdel-Ghaffar K. A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields[J].IEEE Transactions on Communications.2009, 57(1):84-93
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3686) PDF downloads(810) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return