Advanced Search
Volume 32 Issue 5
May  2010
Turn off MathJax
Article Contents
Kong Ding-ke, Wang Guo-zhao. Fast Active Contour Model for Image Segmentation Based on EMD[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1094-1099. doi: 10.3724/SP.J.1146.2009.00643
Citation: Kong Ding-ke, Wang Guo-zhao. Fast Active Contour Model for Image Segmentation Based on EMD[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1094-1099. doi: 10.3724/SP.J.1146.2009.00643

Fast Active Contour Model for Image Segmentation Based on EMD

doi: 10.3724/SP.J.1146.2009.00643
  • Received Date: 2009-04-30
  • Rev Recd Date: 2009-09-25
  • Publish Date: 2010-05-19
  • Classical region-based geometric active contours (e.g. C-V model) only take intensity homogeneity as the similarity measure for regions, and can not obtain satisfactory segmentation results of complicated images. Thus, a fast active contour model based on Earth Movers Distance (EMD) is proposed and well adapted to segment images. First, a similarity measure based on EMD is proposed and employed to the segmentation model. Then, a novel regularization and curve evolution method using oversegmentation is enforced to improve the numerical accuracy and evolution efficiency. Experimental results of both synthetic and remote sensing images verify that the algorithm is efficient and accurate.
  • loading
  • Kass M, Witkin A, and Terzopoulos D. Snakes: Active contour models[J].International Journal of Computer Vision.1988, 1(4):321-331[2]Osher S and Sethian J A. Fronts propagating with curvature- dependent speed: Algorithms based on Hamilton-Jacobi formulation[J].Journal of Computational Physics.1988, 79(1):12-49[3]Sethian J A. Fast marching methods[J].SIAM Review.1999, 41(2):199-235[4]Caselles V, Kimmel R, and Sapiro G. Geodesic active contours[J].International Journal of Computer Vision.1997, 22(1):61-79[5]Malladi R, Sethian J A, and Vemuri B C. Shape modeling with front propagation: a level set approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.1995, 17(2):158-175[6]Chan T F and Vese L. Active contours without edges[J].IEEE Transactions on Image Processing.2001, 10(2):266-277[7]梅雪, 夏良正, 李久贤. 一种基于变分水平集的红外图像分割方法[J].电子与信息学报.2008, 30(7):1700-1702浏览Mei Xue, Xia Liang-zheng, and Li Jiu-xian. A segmentation algorithm of infrared image based on variational formulation level set model[J].Journal of Electronics Information Technology.2008, 30(7):1700-1702[8]曹宗杰, 闵锐, 庞伶俐, 等. 基于统计模型的变分水平集SAR图像分割方法[J].电子与信息学报.2008, 30(12):2862-2866浏览Cao Zong-jie, Min Rui, and Pang Ling-li, et al.. A variational level set SAR image segmentation approach based on statistical model[J].Journal of Electronics Information Technology.2008, 30(12):2862-2866[9]Rubner Y, Tomasi C, and Guibas L. The earth movers distance as a metric for image retrieval[J].International Journal of Computer Vision.2000, 40(2):99-121[10]Hurtut T, Gousseau Y, and Schimitt F. Adaptive image retrieval based on the spatial organization of colors[J].Computer Vision and Image Understanding.2008, 112(2):101-113[11]Ren X and Malik J. Learning a classification model for segmentation. Proceedings 9th International Conference on Computer Vision, Nice, France, 2003: 10-17.[12]Meer P and Georgescu B. Edge detection with embedded confidence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2001, 23(12):1351-1365[13]Gibou F and Fedkiw R. A fast hybrid k-means level set algorithm for segmentation. Proceedings 4th Annual Hawaii International Conference on Statistics and Mathematics, Hawaii, 2005: 281-291.[14]Van der Werff H M A and Van der Meer F D. Shape-based classification of spectrally identical objects[J].ISPRS Journal of Photogrammetry and Remote Sensing.2008, 63(2):251-258
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4585) PDF downloads(1625) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return