Zhang Chi-jun, Peng An-jin, Wang Hou-jun, Li Ben-liang. The Design Method of a Class of Symmetric Biorthogonal Wavelets Suitable for VLSI Implementation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 973-977. doi: 10.3724/SP.J.1146.2009.00532
Citation:
Zhang Chi-jun, Peng An-jin, Wang Hou-jun, Li Ben-liang. The Design Method of a Class of Symmetric Biorthogonal Wavelets Suitable for VLSI Implementation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 973-977. doi: 10.3724/SP.J.1146.2009.00532
Zhang Chi-jun, Peng An-jin, Wang Hou-jun, Li Ben-liang. The Design Method of a Class of Symmetric Biorthogonal Wavelets Suitable for VLSI Implementation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 973-977. doi: 10.3724/SP.J.1146.2009.00532
Citation:
Zhang Chi-jun, Peng An-jin, Wang Hou-jun, Li Ben-liang. The Design Method of a Class of Symmetric Biorthogonal Wavelets Suitable for VLSI Implementation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 973-977. doi: 10.3724/SP.J.1146.2009.00532
The design method of a class of symmetric biorthogonal wavelets is proposed in this paper. The filter banks of the wavelets possess lattice structure, the analysis and synthesis filter banks for wavelets meet biorthogonality and regularly conditions, and the filters are all real binary coefficients. Therefore, the wavelet transform is suitable for high-speed VLSI implementation. Both the mathematical derivations and the design examples in the paper verify the effectiveness of proposed method.
Daubechies I. Orthonormal bases of compactly supportedwavelets[J].Communications on Pure Applied Mathematics.1988, 41:909-996[2]Vetterli M and Herley C. Wavelets and filter banks : Theoryand Design [J].IEEE Transactions on Signal Processing.1992, 40(9):2207-2232[3]Olkkonen H, Olkkonen J T, and Pesola P. Efficient liftingwavelet transform for microprocessor and VLSIapplications[J].IEEE Signal Processing Letters.2005, 12(2):120-122[4]Olkkonen H and Olkkonen J T. Discrete lattice wavelettransform [J].IEEE Transactions on Circuits andSystems-II: Express Briefs.2007, 54(1):71-75[5]赵秀影,任志茹等. 航空图像压缩的双正交小波滤波器整数化设计[J]. 光电与控制, 2008, 15(5): 24-27.Zhao Xiu-ying and Ren Zhi-ru. Design of integralbiorthogonal wavelet filter for aviation image compression[J].Electronics Optics Control, 2008, 15(5): 24-27.[6]李岚, 安军龙. 双正交小波滤波器的构造[J]. 西安文理学院学报(自然科学版), 2008, 11(3): 28-30.Li Lan and An Jun-long. Construction of six pairs ofbiorthogonal wavelet filters[J]. Journal of Xian University ofArts Science (Eat Sci Ed), 2008, 11(3): 28-30.[7]Mallat S G. Multiresolution approximations and waveletorthonormal bases of L2(R). Transactions of the AmericanMathematical Sociology, 1989, 315(1): 69-87.[8]Cohen A, Daubechies I, and Feauveau J. Biorthogonal basesof compactly supported wavelets[J].Communications onPure Applied Mathematics.1992, 45:485-500[9]Strang G and Nguyen T. Wavelets and Filter Banks.Cambridge, MA: Wellesley, 1996: 221-249.[10]Rioul O. Regular wavelets: A discrete-time approach [J].IEEE Transactions on Signal Processing.1993, 41(12):3572-3579