Advanced Search
Volume 32 Issue 4
Dec.  2010
Turn off MathJax
Article Contents
Yang Xue-ya, Chen Bai-xiao. A High-Resolution Method for 2D DOA Estimation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 953-958. doi: 10.3724/SP.J.1146.2009.00515
Citation: Yang Xue-ya, Chen Bai-xiao. A High-Resolution Method for 2D DOA Estimation[J]. Journal of Electronics & Information Technology, 2010, 32(4): 953-958. doi: 10.3724/SP.J.1146.2009.00515

A High-Resolution Method for 2D DOA Estimation

doi: 10.3724/SP.J.1146.2009.00515
  • Received Date: 2009-04-10
  • Rev Recd Date: 2009-10-08
  • Publish Date: 2010-04-19
  • A high-resolution algorithm for 2D DOA estimation is proposed to reduce the computational complexity of traditional high-resolution methods. The objective function of the optimization issue based on norm constraint is developed firstly. Then the sparse solution corresponding to the received data along the azimuth dimension is deduced by solving the minimization problem using the iteration algorithm, then it is used to obtain the angular frequencies in which azimuth and elevation angles are coupled, and signals of different angular frequencies are separated. Finally, the sparse solution relating to each signal is obtained to get the elevation angle and then compute the corresponding azimuth angle. A modified method is presented to overcome the blind angular region problem occurred in the algorithm. Compared with the traditional high-resolution methods, the proposed method has lower SNR threshold and simple procedure to achieve high precision with lower sidelobe level. Numerical simulation results verify the effectiveness of the method.
  • loading
  • Zhang T T, Lu Y L, and Hui H T. Compensation for themutual coupling effect in uniform circular arrays for 2D DOAestimations employing the maximum likelihood technique[J].IEEE Transactions on Aerospace and Electronic Systems.2008, 44(3):1215-1221[2]Forster P, Larzabal P, and Boyer E. Threshold performanceanalysis of maximum likelihood DOA estimation[J].IEEETransactions on Signal Processing.2004, 52(11):3183-3191[3]Li Ming-hui and Lu Yi-long. Maximum likelihood DOAestimation in unknown colored noise fields[J].IEEETransactions on Aerospace and Electronic Systems.2008,44(3):1079-1090[4]Park Cheol-Sun, Choi Jun-Ho, and Yang Jong-Won, et al..Direction of arrival estimation using weighted subspacefitting with unknown number of signal sources. Proc. 11thInternational Conference on Advanced CommunicationTechnology, Phoenix Park, Dublin, Feb.15-18, 2009:2295-2298.[5]Jian C, Wang S, and Lin L. Two-dimensional DOAestimation of coherent signals based on 2D Unitary ESPRITmethod. Proc. 8th International Conference on SignalProcessing, Beijing, China, 2006: 16-20.[6]Gao Fei-fei, Nallanathan A, and Wang Yi-de. ImprovedMUSIC under the coexistence of both circular andnoncircular sources[J].IEEE Transactions on Signal Processing.2008, 56(7):3033-3038[7]Zoltowski M D and Lee T S. Maximum likelihood basedsensor array signal processing in the beamspace domain forlow angle radar tracking[J].IEEE Transactions on SignalProcessing.1991, 39(3):656-671[8]Bobin J, Starck J L, and Fadili J, et al.. Sparsity andmorphological diversity in blind source separation[J].IEEETransactions on Image Processing.2007, 16(11):2662-2674[9]Cheng Ping, Jiang Yi-cheng, and Xu Rong-qing. ISARimaging based on sparse signal representation with multiplemeasurement vectors. Proc. Int. Conf. Radar, Shanghai,China, Oct. 16-19, 2006: 1-4.[10]Pisharody G and Weile D S. Robust solution of time-domainintegral equations using loop-tree decomposition andbandlimited extrapolation. IEEE Transactions on Antennasand Propagation. 2005, 53(6): 2089-2098.[11]Gorodnitsky I F and Rao B D. Sparse signal reconstructionfrom limited data using FOCUSS: A re-weighted minimumnorm algorithm[J].IEEE Transactions on Signal Processing.1997, 45(3):600-616[12]Wipf D P and Rao B D. Bayesian learning for sparse signalreconstruction. Proc. IEEE ICASSP., La Jolla, CA, Apr.6-10,2003: 601-604.[13]Cotter S F, Rao B D, and Kjersti Engan, et al.. Sparsesolutions to linear inverse problems with multiplemeasurement vectors[J].IEEE Transactions on SignalProcessing.2005, 53(7):2477-2488[14]Malioutov D, Cetin M, and Willsky A S. A sparse signalreconstruction perspective for source localization with sensorarrays[J].IEEE Transactions on Signal Processing.2005, 53(8):3010-3022[15]Rao B D, Engan K, and Cotter S F, et al.. Subset selection innoise based on diversity measure minimization[J].IEEETransactions on Signal Processing.2003, 51(3):760-770[16]Sacchi M D, Ulrych T J, and Walker C J. Interpolation anextrapolation using a high-resolution discrete Fouriertransform[J].IEEE Transactions on Signal Processing.1998,46(1):31-38[17]Chen P, Wu T J, and Yang J. A comparative study of modelselection criteria for the number of signals[J].IET Radar, Sonar Navigation.2008, 2(3):180-188[18]Huang Lei, Wu Shun-jun, and Li Xia. Reduced-rank MDLmethod for source enumeration in high-resolution arrayprocessing[J].IEEE Transactions on Signal Processing.2007,55(12):5658-5667[19]Huang Lei, Long Teng, and Wu Shun-jun. Sourceenumeration for high-resolution array processing usingimproved gerschgorin radii without eigendecomposition[J].IEEE Transactions on Signal Processing.2008, 56(12):5916-5925
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3342) PDF downloads(824) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return