Advanced Search
Volume 32 Issue 4
Dec.  2010
Turn off MathJax
Article Contents
Feng Hong-xiao, Jiao Li-cheng, Hou Biao. SAR Image Despeckling Based on Local Translation-Rayleigh Distribution Model[J]. Journal of Electronics & Information Technology, 2010, 32(4): 925-931. doi: 10.3724/SP.J.1146.2009.00512
Citation: Feng Hong-xiao, Jiao Li-cheng, Hou Biao. SAR Image Despeckling Based on Local Translation-Rayleigh Distribution Model[J]. Journal of Electronics & Information Technology, 2010, 32(4): 925-931. doi: 10.3724/SP.J.1146.2009.00512

SAR Image Despeckling Based on Local Translation-Rayleigh Distribution Model

doi: 10.3724/SP.J.1146.2009.00512
  • Received Date: 2009-04-10
  • Rev Recd Date: 2009-09-28
  • Publish Date: 2010-04-19
  • Based on the statistical model in stationary wavelet domain, an algorithm of SAR image despeckling is developed. Firstly, nonlogarithmic additive model is applied to SAR image, and then a statistical distributionLocal Translation-Rayleigh Distribution Model (LTRDM) is proposed for the noise within nonlogarithmic additive model in the image domain. Finally, based on this model and in the stationary wavelet domain, the solution of real signal coefficients are given by using Maximum A Posteriori(MAP). Experiments show that local translation-Rayleigh distribution model is effective, and also indicate that a despeckling algorithm based on LTRDM proposed in this paper is robust, and possess high performance over many traditional algorithms.
  • loading
  • Oliver C and Quegan S. Understanding Synthetic ApertureRadar Images. Boston MA: Artech House, 1998: 158-187.[2]Lee J S. Digital image enhancement and noise filtering by useof local statistics[J].IEEE Transactions on Pattern Analysisand Machine Intelligence.1980, PAMI-2(2):165-168[3]Lopes A, Touzi R, and Nezry E. Adaptive speckle filters andscene heterogeneity[J].IEEE Transactions Geoscience andRemote Sensing.1990, 28(6):992-1000[4]Lopes A.[J].Nezry E, and Touzi R, et al.. Maximum a posteriorifiltering and first order texture models in SAR images. Proc.IGARSS90, Washington, D.C., May 20-2.1990,:-[5]Bhuiyanr M I H, Ahmad M O, and Swamy M N S. Spatiallyadaptive wavelet- based method using the cauchy prior fordenoising the SAR images. IEEE Transactions on Geoscienceand Remote Sensing, 2007, 17(4): 500-507.[6]卢晓光, 韩萍, 吴仁彪等. 基于二维小波变换和独立分量分析的SAR 图像去噪方法[J].电子与信息学报.2008, 30(5):1052-1055浏览[7]Bianchi T, Argenti F, and Alparone L. Segmentation-basedMAP despeckling of SAR images in the undecimated Waveletdomain[J].IEEE Transactions on Geoscience and RemoteSensing.2008, 46(9):2728-2742[8]Stian S and Torbj.rn E. A stationary wavelet-domain wienerfilter for correlated speckle. IEEE Transactions onGeoscience and Remote Sensing, 2008, 46(4): 1219-1230.[9]郭旭静, 王祖林. SAR 图像的非下采样Contourlet 噪声抑制算法. 北京航空航天大学学报, 2007, 33(8): 894-897.Guo X J and Wang Z L. Nonsubsampled Contourlet specklereduction algorithm for SAR images. Journal of BeijingUniversity of Aeronautics and Astronautics, 2007, 33(8):894-897.[10]Xie H, Pierce L E, and Ulaby F T. Statistical properties oflogarithmically transformed speckle[J].IEEE Transactions onGeoscience and Remote Sensing.2002, 40(3):721-727[11]Nason G P and Silverman B W. The stationary wavelettransform and some statistical applications in wavelet andstatistics. Lecture notes in statistics, Berlin: Spinger Verlag,1995: 281-299.[12]Xie H, Pierce L E, and Ulaby F T. SAR speckle reductionusing wavelet denoising and Markov random field modeling[J].IEEE Transactions on Geoscience and Remote Sensing.2002,40(10):2196-2212
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4152) PDF downloads(1181) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return