Advanced Search
Volume 32 Issue 5
May  2010
Turn off MathJax
Article Contents
Zhang Jun-gen, Ji Hong-bing. IMM Iterated Extended Kalman Particle Filter Based Target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298
Citation: Zhang Jun-gen, Ji Hong-bing. IMM Iterated Extended Kalman Particle Filter Based Target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298

IMM Iterated Extended Kalman Particle Filter Based Target Tracking

doi: 10.3724/SP.J.1146.2009.00298
  • Received Date: 2009-03-09
  • Rev Recd Date: 2010-01-29
  • Publish Date: 2010-05-19
  • A new algorithm based on Interacting Multiple Model (IMM) iterated extended Kalman particle filter is proposed for maneuvering target tracking, which uses an improved Particle Filter (PF) in multiple model. First, the Iterated Extended Kalman Filter (IEKF) is modified by providing a new measurement update based on Gauss-Newton iteration, thus the linearity error is reduced. Then the modified IEKF is used to generate the importance density function of PF, which integrates the latest observation into system state transition density. Finally, simulation results are presented to demonstrate the improved performance of the proposed method over Interacting Multiple Model Particle Filter (IMMPF).
  • loading
  • Mazor E, Averbuch A, and Bar-Shalom Y, et al.. Interacting multiple model methods in target tracking: a survey[J].IEEE Transactions on Aerospace and Electronic Systems.1998, 34(1):103-123[2]Kim Byung-doo and Lee Ja-sung. IMM algorithm based on the analytic solution of steady state Kalman filter for radar target tracking[C]. IEEE International Radar Conference, Arlington, Virginia, USA, May, 2005: 757-762.[3]Cappe O, Godsill S J, and Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE.2007, 95(5):899-924[4]Boers Y and Driessen J N. Interacting multiple model particle filter[J].IEE Proceedings-Radar Sonar Navigation.2003, 150(5):344-349[5]Morelande M R and Challa S. Maneuvering target tracking in clutter using particle filters[J].IEEE Transactions on Aerospace and Electronic Systems.2005, 41(1):252-270[6]Arulampalam M S, Maskell S, and Gordon N, et al.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing.2002, 50(2):174-188[7]李良群, 姬红兵, 罗军辉. 迭代扩展卡尔曼粒子滤波器[J]. 西安电子科技大学学报, 2007, 34(2): 233-238.Li Liang-qun, Ji Hong-bing, and Luo Jun-hui. Iterated extended Kalman particle filtering[J]. Journal of Xidian University, 2007, 34(2): 233-238.[8]Bell B M and Cathey F W. The iterated Kalman filter update as a Gauss-Newton method[J].IEEE Transactions on Automatic Control.1993, 38(2):294-297[9]Johnston L A and Krishnamurthy V. Derivation of a sawtooth iterated extended Kalman smoother via the AECM algorithm[J].IEEE Transactions on Signal Processing.2001, 49(9):1899-1909[10]杨争斌, 郭福成, 周一宇. 迭代IMM机动目标被动单站跟踪算法[J]. 宇航学报, 2008, 29(1): 304-310.Yang Zheng-bin, Guo Fu-cheng, and Zhou Yi-yu. Iterated IMM algorithm for maneuvering target tracking by a single passive observer[J]. Journal of Astronautics, 2008, 29(1): 304-310.[11]Van der R and Doucet Merwe F, et al.. The unscented particle filter[R]. Technical Report CUED/F-INFENG/TR 380, Cambridge University Engineering Department, Cambridge, England, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4248) PDF downloads(2076) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return