Advanced Search
Volume 32 Issue 4
Dec.  2010
Turn off MathJax
Article Contents
Chen Xiao-jun, Cheng Hao, Tang Bin. Underdetermined Blind Radar Signal Separation Based on ICA[J]. Journal of Electronics & Information Technology, 2010, 32(4): 919-924. doi: 10.3724/SP.J.1146.2009.00291
Citation: Chen Xiao-jun, Cheng Hao, Tang Bin. Underdetermined Blind Radar Signal Separation Based on ICA[J]. Journal of Electronics & Information Technology, 2010, 32(4): 919-924. doi: 10.3724/SP.J.1146.2009.00291

Underdetermined Blind Radar Signal Separation Based on ICA

doi: 10.3724/SP.J.1146.2009.00291
  • Received Date: 2009-03-09
  • Rev Recd Date: 2009-12-07
  • Publish Date: 2010-04-19
  • A method of the mixing matrix estimation in the underdetermined source separation is proposed in which the sources are not sparse enough to estimate the mixing matrix. Getting many sub matrixes through applying Independent component analysis(ICA) for observation signals and removing the elements do not belong to the mixing matrix, the mixing matrix is estimated precisely with C-means clustering agglomeration. Then, the source signals can be recovered with the statistically sparse decomposition principle. The experiment shows that the method have better accuracy and validity than K-means and searching-and-averaging method in the time domain in estimating the mixing matrix.
  • loading
  • Aissa-El-Bey, Linh-Trung N, and Abed-Meraim K, et al..Underdetermined blind separation of nondisjoint sources inthe time-frequency domain[J].IEEE Transactions on SignalProcessing.2007, 55(3):897-907[2]Delorme A, Sejnowski T, and Makeig S. Enhanced detectionof artifacts in EEG data using high-order statistics andindependent component analysis[J].Neuroimage.2007, 34(4):1443-1449[3]Bofill P and Zibulevsky M. Underdetermined blind sourceseparation using sparse representations [J]. SignalProcessing, 2001, 81(11): 2353-2362.[4]Donoho D L and Elad M. Optamally sparse representation ingeneral dictionaries via l1-norm minimization[J].Proceedingsof the National Academy of Sciences of the USA.2003, 100(4):2197-2202[5]Li Y Q, Cichoci A, and Amari S. Analysis of sparserepresentation and blind source separation[J]. NeuralComputation, 2004, 16(6): 1193-1234.[6]Fvotte C and Godsill S. A Bayesian approach for blindseparation of sparse sources[J]. IEEE Transactions on AudioSpeech Language Process, 2006, 16(6): 2174-2188.[7]肖明, 谢胜利, 傅予力. 欠定情形下语音信号盲分离的时域检索平均法. 中国科学(E辑), 2007, 37(12): 1564-1575.Xiao M, Xie S L, and Fu Y L. Searching-and-averagingmethod of underdetermined blind speech signal separation intime domain[J]. Sci China(E index), 2007, 37(12): 1564-1575.[8]Araki S, Sawada H, and Mukai R. Underdetermined blindsparse source separation for arbitrarily arranged multiplesensors[J].Signal Processing.2007, 87(8):1833-1847[9]谭北海, 谢胜利. 基于源信号数目估计的欠定盲分离[J].电子与信息学报.2008, 30(4):863-867浏览[10]Hamada T, Nakano K, and Ichijo A. Wavelet-basedunderdetermined blind source separation of speech mixtures.IEEE ICCAS, Seoul, Korea, 2007: 2790-2794.[11]Peng D and Xiang Y. Underdetermined blind sourceseparation based on relaxed sparsity condition of sources[J].IEEE Transactions Signal Processing.2009, 57(2):809-814[12]Cruces S, Castedo L, and Cichocki A. Robust blind sourceseparation algorithms using cumulants[J]. Neural Computing,2002, 49(12): 87-118.[13]Xiao M, Xie S L, and Fu Y L. A statistically sparsedecomposition principle for underdetermined blind sourceseparation. Intelligent Signal Processing andCommunication Systems, Guang Zhou, China, 2005:165-168.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4241) PDF downloads(1202) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return