Advanced Search
Volume 32 Issue 4
Dec.  2010
Turn off MathJax
Article Contents
Pan Jie, Zhou Jian-jiang, Wang Fei. A Fast Algorithm of DOA Estimation for Sparse Uniform Circular Array Based on Manifold Separation Technique(MST)[J]. Journal of Electronics & Information Technology, 2010, 32(4): 963-966. doi: 10.3724/SP.J.1146.2009.00175
Citation: Pan Jie, Zhou Jian-jiang, Wang Fei. A Fast Algorithm of DOA Estimation for Sparse Uniform Circular Array Based on Manifold Separation Technique(MST)[J]. Journal of Electronics & Information Technology, 2010, 32(4): 963-966. doi: 10.3724/SP.J.1146.2009.00175

A Fast Algorithm of DOA Estimation for Sparse Uniform Circular Array Based on Manifold Separation Technique(MST)

doi: 10.3724/SP.J.1146.2009.00175
  • Received Date: 2009-02-13
  • Rev Recd Date: 2009-12-23
  • Publish Date: 2010-04-19
  • A novel version of PM-Root-MUSIC algorithm is developed in this paper. The algorithm is based on the Manifold Separation Technique (MST) for fast DOA estimation of Uniform Circular Array (UCA) when elements of UCA are sparse. The method does not suffer from the mapping error caused by classic beamspace transform and does not need eigenvalue decomposition, so the computational burden is greatly reduced and the estimation results are close to CRB performance. Simulation results show the method is effective.
  • loading
  • Mathews C P and Zoltowski M D. Eigenstructure techniquesfor 2-D angle estimation with uniform circular arrays[J].IEEETransactions on Signal Processing.1994, 42(9):2395-2407[2]Davies D E N and Rudge A W. Ed. The Handbook ofAntenna Design. London, UK, Peregrinus, 1983, Vol.2,Ch.12.[3]Lian Xiao-hua and Zhou Jian-jiang. 2-D DOA estimationfor uniform circular arrays with PM. 7th InternationalSymposium on Antennas, Propagation EM Theory, Beijing,2006: 1-4.[4]Belloni F and Koivunen V. Beamspace transform for UCA:Error analysis and bias reduction[J].IEEE Transactions onSignal Processing.2006, 54(8):3078-3089[5]Belloni F, Richter A, and Koivunen V. Extension ofroot-MUSIC to non-ULA array configurations IEEEInternational Conference on Acoustics, Speech, SignalProcessing (ICASSP), France, 2006: 897-900.[6]Belloni F, Richter A, and Koivunen V. DoA estimation viamanifold separation for arbitrary array structures[J].IEEETransactions on Signal Processing.2007, 55(10):4800-4810[7]Costa M, Richter A, Belloni F, and Koivunen V. Polynomialrooting-based direction finding for arbitrary arrayconfigurations 5th IEEE Sensor Array and MultichannelSignal Processing Workshop (SAM08) Germeny, 2008: 58-62.[8]Doron M A and Doron E. Wavefield modeling and arrayprocessing, Part ISpatial sampling[J].IEEE Transactionson Signal Processing.1994, 42(10):2549-2559[9]Rubsamen M and Gershman A B. Performance analysis ofroot-music-based direction-of-arrival estimation for arbitrarynon-uniform array , 5th IEEE Sensor Array and MultichannelSignal Processing Workshop (SAM08), Germeny. 2008:381-385.[10]Goossens R, Rogier H, and Werbrouck S. UCA root-MUSICwith sparse uniform circular arrays[J].IEEE Transactions onSignal Processing.2008, 56(8):4095-4099[11]Marcos S, Marsal A, and Benidir M. Propagator method forsource bearing estimation[J].Signal Processing.1995, 42(2):121-138[12]季飞, 等. 基于DOA矩阵法的矢量传感器阵列二维波达方向估计[J].电子与信息学报.2008, 30(8):1886-1889浏览[13]Neff C A and Reif J H. An efficient algorithm for thecomplex roots problem[J].Journal of Complexity.1996, 12(2):81-115[14]Lang M and Frenzel B C. Polynomial root finding[J].IEEESignal Processing Letters.1994, 1(10):141-143
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3189) PDF downloads(1110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return