Advanced Search
Volume 31 Issue 12
Dec.  2010
Turn off MathJax
Article Contents
Guo Hai-yan, Yang Zhen. Compressed Speech Signal Sensing Based on Approximate KLT[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2948-2952. doi: 10.3724/SP.J.1146.2008.01704
Citation: Guo Hai-yan, Yang Zhen. Compressed Speech Signal Sensing Based on Approximate KLT[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2948-2952. doi: 10.3724/SP.J.1146.2008.01704

Compressed Speech Signal Sensing Based on Approximate KLT

doi: 10.3724/SP.J.1146.2008.01704
  • Received Date: 2008-12-15
  • Rev Recd Date: 2009-05-18
  • Publish Date: 2009-12-19
  • Compressed Sensing is a research focus rising in recent years. On the basis of the signals sparse representation in the KLT domain, this paper proposes an approximate KLT method using template matching and studies on the corresponding compressed speech signal sensing. First, it verifies the sparsity of speech signal in the approximate KLT domain. Second, by speech signal and a measurement matrix, it arranges measurements of fixed or adaptive length according to frame energy. Third, according to the measurements, it finds the speech signals sparsest coefficient vector through L1 optimization algorithm to recover the speech signal. Simulation results demonstrate that compressed speech signal sensing in the approximate KLT using template matching has good performance.
  • loading
  • Donoho D. Compressed sensing[J].IEEE Transactions onInformation Theory.2006, 52(4):1289-1306[2]Tsaig Y and Donoho D. Extensions of compressed sensing[J].Signal Processing.2006, 86(3):533-548[3]Cands E, Romberg J, and Tao T. Robust uncertaintyprinciples: Exact signal reconstruction from highlyincomplete frequency information[J].IEEE Transactions onInformation Theory.2006, 52(2):489-509[4]Romberg J. Imaging via compressive sampling. IEEE SignalProcessing Magazine, 2008, 25(2): 14-20.[5]Duarte M, Davenport M, Takhar D, Laska J, Sun T, Kelly K,and Baraniuk R. Single-pixel imaging via compressivesampling[J].IEEE Signal Processing Magazine.2008, 25(2):83-91[6]Gemmeke J F and Cranen B. Using sparse representations formissing data imputation in noise robust speech recognition.European Signal Processing Conf. (EUSIPCO), Lausanne,Switzerland, August 2008: 987-991.[7]Baraniuk R G. Compressive sensing. IEEE Signal ProcessingMagazine, 2007, 24(4): 118-121.[8]Baron D, Wakin M, Duarte M, Sarvotham S, and Baraniuk R.Distributed compressed sensing. Technical Report ECE-0612,Electrical and Computer Engineering Department, RiceUniversity, December 2006.[9]Chen S S, Donoho D L, and Saunders M A. Atomicdecomposition by basis pursuit[J].SIAM Review.2001, 43(1):129-159[10]A帕普里斯, SU佩莱著, 保铮, 冯大政, 水鹏朗译. 概率、随机变量与随机过程. 第4 版, 西安: 西安交通大学出版社,2004: 209-213.[11]Coifman R R and Donoho D L. Translation-InvariantDe-noising. New York: Springer-Verlag, 1995: 125-150.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3507) PDF downloads(1055) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return