Advanced Search
Volume 31 Issue 12
Dec.  2010
Turn off MathJax
Article Contents
Chang Wei-wei, Guo Lei, Liu Kun, Fu Zhao-yang. Denoising of Hyperspectral Data Based on Contourlet Transform and Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2892-2896. doi: 10.3724/SP.J.1146.2008.01675
Citation: Chang Wei-wei, Guo Lei, Liu Kun, Fu Zhao-yang. Denoising of Hyperspectral Data Based on Contourlet Transform and Principal Component Analysis[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2892-2896. doi: 10.3724/SP.J.1146.2008.01675

Denoising of Hyperspectral Data Based on Contourlet Transform and Principal Component Analysis

doi: 10.3724/SP.J.1146.2008.01675
  • Received Date: 2008-12-10
  • Rev Recd Date: 2009-05-15
  • Publish Date: 2009-12-19
  • This paper proposes a denoising method of hyperspectral super-dimensional data based on Contourlet transform and principal component analysis. At first the sparse representation of images is accomplished with Contourlet transform. Then the Contourlet coefficients are processed with principal component analysis. The experimental results based on OMIS images show that the proposed method can simultaneously eliminate noises in multi-band hyperspectral images, improve the quality of the whole hyperspectral data and outperforms methods based on PCA and Contourlet transform respectively.
  • loading
  • 浦瑞良, 宫鹏. 高光谱遥感及其应用. 北京: 高等教育出版社,2000, 第1 章.Pu Rui-liang and Gong Peng. Hyperspectral Remote Sensingand Its Applications[M]. Beijing: Higher Education Press,2000, Chapter 1.[2]Vaiphasa C. Consideration of smoothing techniques ofhyperspectral remote sensing[J].ISPRS Journal ofPhotogrammetry and Remote Sensing.2006, 60(2):91-99[3]Torrecilla E, Aymerich I F, and Pons S, et al.. Effect ofspectral resolution in hyperpspectral data analysis[J].Geoscience and Remote Sensing Symposium, 2007, 23(28):910-913.[4]陈志刚, 束炯. 高光谱图像光谱域噪声去除的经验模态分解方法[J]. 红外与毫米波学报, 2008, 27(5): 378-382.Chen Zhi-gang and Shu Jiong. Empirical mode decompositionon removing spectral noise in hyperspectral image[J]. Journalof Infrared and Millimeter-wave, 2008, 27(5): 378-382.[5]Backer S D, Piurica A, and Huysmans B, et al.. Denoising ofmulticomponent images using wavelet least-squaresestimators[J].Image and Vision Computing.2008, 26(7):1038-1051[6]Rakwatin P, Takeuchi W, and Yasuoka Y. Stripe noisereduction in MODIS data by combining histogram matchingwith facet filter[J].IEEE Transactions on Geoscience andRemote Sensing.2007, 45(6):1844-1856[7]Stephan K, Hibbitts C A, and Hoffmann H, et al.. Reductionof instrument-dependent noise in hyperspectral image datausing the principal component analysis: Applications toGalileo NIMS data[J].Planetary and Space Science.2008,56(3):406-419[8]McCabe G P. Principal variables[J].Technometrics.1984,26(2):137-144[9]Ramakrishna B, Wang Jing, and Chang C I, et al..Spectral/spatial hyperspectral image compression inconjunction with virtual dimensionality. Algorithms andtechnologies for multispectral, hyperspectral, andultraspectral imagery XI, Proc. 5806, SPIE, 2005: 772-781.[10]Do Mi N and Vetterli Ma. The Contourlet transform: Anefficient directional multiresolution image representation[J].IEEE Transactions on Image Processing.2005, 14(2):2091-2106[11]张瑾, 方勇. 基于分块Contourlet 变换的图像独立分量分析方法[J].电子与信息学报.2007, 29(8):1813-1816浏览[12]张晶, 方勇华. 基于Contourlet 变换的遥感图像去噪新算法[J]. 光学学报, 2008, 28(3): 462-466.Zhang Jing and Fang Yong-hua. Novel denoising method forremoter sensing image based on Contourlet transform. ActaOptica Sinica, 2008, 28(3): 462-466.[13]Li Shu-tao, Kwok J T, and Wang Yao-nan. Multi-focus imagefusion using artificial neural networks[J].Pattern RecognitionLetters.2002, 23(6):985-997
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3502) PDF downloads(1348) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return