Advanced Search
Volume 31 Issue 12
Dec.  2010
Turn off MathJax
Article Contents
Zong Yu, Li Ming-chu, Jiang He. Approximate Backbone Guided Reduction Algorithm for Clustering[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2953-2957. doi: 10.3724/SP.J.1146.2008.01663
Citation: Zong Yu, Li Ming-chu, Jiang He. Approximate Backbone Guided Reduction Algorithm for Clustering[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2953-2957. doi: 10.3724/SP.J.1146.2008.01663

Approximate Backbone Guided Reduction Algorithm for Clustering

doi: 10.3724/SP.J.1146.2008.01663
  • Received Date: 2008-12-08
  • Rev Recd Date: 2009-06-29
  • Publish Date: 2009-12-19
  • In this paper, the characteristic of approximate backbone is analyzed and an Approximate Backbone guided Reduction Algorithm for Clustering (ABRAC) is proposed. ABRAC works as follows: firstly, multiple local optimal solutions are obtained by an existing heuristic clustering algorithm; then, the approximate backbone is generated by intersection of local optimal solutions; afterwards, the search space can be dramatically reduced by fixing the approximate backbone; finally, this reduced search space can be efficiently searched to find high quality solutions. Extensively wide experiments on 26 synthetic and 3 real-life data sets demonstrate that the backbone has significantly effects for improving the quality of clustering, reducing the impact of initial solution, and speeding up the convergence rate.
  • loading
  • 孙吉贵, 刘杰, 赵连宇. 聚类算法研究. 软件学报, 2008, 19(1):48-61.Sun J G, Liu J, and Zhao L Y. Clustering algorithms research.Journal of Software, 2008, 19(1): 48-61.[2]Drinesa P, Frieze A, and Kannan R, et al.. Clustering largegraphs via the singular value decomposition [J]. MachineLearning, 2004, 56(1-3): 9-33.[3]Jain A K and Dubes R C. Algorithms for Clustering Data [M].Prentice Hall, Englewood Cliffs, New Jersey, 1998: 10-89.[4]David A and Sergei V. k-means++: the advantages of carefulseeding[C]. SODA 2007, New Orleans France, 2007:1027-1035.[5]Amir A and Lipoka D. A K-mean clustering algorithm formixed numeric and categorical data [J]. Data and KnowledgeEngineering, 2007, 63(2): 503-527.[6]江贺, 张宪超, 陈国良. 图的二分问题唯一全局最优解实例与骨架计算复杂性[J]. 科学通报, 2007, 52(17): 2077-2081.Jiang H, Zhang X C, and Chen G L. Exclusive optimalsolution instance and backbone computation complexity ofgraph bi-partition problem. Chinese Science Bulletin, 2007,52(17): 2077-2081.[7]江贺, 张宪超, 陈国良, 李明楚. 二次分配问题的骨架分析与算法设计[J]. 中国科学E 辑, 2008, 38(2): 209-222 .Jiang H, Zhang X C, Chen G L, and Li M C. Backboneanalysis and algorithm design for the quadratic assignmentproblem. Science in China Series E: Information Sciences,2008, 28(2): 209-222.[8]Valnir F J. Backbone guided dynamic local search forpropositional satisfiability[C]. Proceeding of 9thInternational Symposium on Artificial Intelligence andMathematics (AI Math-06). Florida America, 2006:100-108.[9]Zhang W X. Configuration landscape analysis and backboneguided local search: Part I: Satisifiability and maximumsatisfiability [J].Artificial Intelligence.2004, 158(1):1-26[10]He J, Tan A H, and Tan C L, et al.. On quantitativeevaluation of clustering systems[C]. Information Retrievaland Clustering. Kluwer Academic Publishers, ISBN1-4020-7682-7, 2003.[11]He J, Lan M, and Tan C L, et al.. Initialization of clusterrefinement algorithms: a review and comparative study[C].Proceedings of International Joint Conference on NeuralNetworks (IJCNN). Budapest Hungary, 2004: 297-302.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3138) PDF downloads(898) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return