Advanced Search
Volume 31 Issue 11
Dec.  2010
Turn off MathJax
Article Contents
Tian Chao, Xie Yong-jun, Wang Yuan-yuan, Jiang Yong-hui. Fast Solutions of Wide-Band RCS Pattern of Objects Using MLFMA with the Best Uniform Approximation[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2772-2775. doi: 10.3724/SP.J.1146.2008.01631
Citation: Tian Chao, Xie Yong-jun, Wang Yuan-yuan, Jiang Yong-hui. Fast Solutions of Wide-Band RCS Pattern of Objects Using MLFMA with the Best Uniform Approximation[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2772-2775. doi: 10.3724/SP.J.1146.2008.01631

Fast Solutions of Wide-Band RCS Pattern of Objects Using MLFMA with the Best Uniform Approximation

doi: 10.3724/SP.J.1146.2008.01631
  • Received Date: 2008-12-05
  • Rev Recd Date: 2009-04-27
  • Publish Date: 2009-11-19
  • MultiLevel Fast Multipole Algorithm (MLFMA) in conjugation with the best uniform approximation is applied to the scattering analysis of an arbitrary shaped perfect electric conductor over a wide frequency band in this paper. The nodes of Chebyshev within a given frequency range are found firstly, and the surface electric currents at these nodes are computed with MLFMA. The surface current on perfect electric conductor is expanded in a polynomial function via the best uniform approximation, then the electric current distribution can be obtained at any frequency within the given frequency range, which is used to compute the scattered fields and the wide-band Radar Cross Section (RCS). The numerical results presented in this paper are compared with the results obtained with MLFMA at each frequency. The results show that the computational efficiency is improved drastically without sacrificing much accuracy.
  • loading
  • Harrington R F. 王尔杰等译. 计算电磁场的矩量法[M]. 北京: 国防工业出版社, 1981: 1-109.[2]Song J M and Chew W C. Multilevel fast-multipolealgorithm for solving combined field integral equations ofelectromagnetic scattering [J].Microwave and OpticalTechnology Letters.1995, 10(1):14-19[3]Lu Cai-Cheng and Chew W C. Fast far-field approximationfor calculating the RCS of large objects [J].Microwave andOptical Technology Letters.1995, 8(5):238-241[4]Song J M, Lu C C, and Chew W C, et al .. Fast illinois solvercode (FISC)[J].IEEE Antennas and Propagation Magazine.1998, 40(3):27-34[5]胡俊, 聂在平, 王军, 等. 三维电大目标散射求解的多层快速多级子方法[J] . 电波科学学报, 2004, 19(5): 509-514.Hu J, Nie Zai-ping, and Wang J, et al.. Multilevel fastmultipole algorithm for solving scattering from 3-Delectrically large object [J]. Chinese Journal of Radio Science,2004, 19(5): 509-514.[6]Walln H, J.rvenp.. S, Yl.-Oijala P, and Sarvas J.Broadband Mller-MLFMA for electromagnetic scatteringby dielectric objects[J]. IEEE Transactions on Antennas andPropagation. 2007, 55(5): 1423-1430.[7]Li Wei-Dong, Hong Wei, and Zhou Hou-Xing. An IEODDM-MLFMA scheme with DILU preconditioner foranalysis of electromagnetic scattering from large complexobjects[J].IEEE Transactions on Antennas and Propagation.2008, 56(5):1368-1380[8]Hanninen I and Sarvas J. Efficient evaluation of the Rokhlintranslator in multilevel fast multipole algorithm[J].IEEETransactions on Antennas and Propagation.2008, 56(8):2356-2362[9]Hu J, Nie Z, Lei L, and Tian L J. Fast solution of scatteringfrom conducting structures by local MLFMA based onimproved electric field integral equation[J].IEEETransactions on Electromagnetic Compatibility.2008, 50(4):940-945[10]Ergul O and Gurel L. Efficient parallelization of themultilevel fast multipole algorithm for the solution oflarge-scale scattering problems[J].IEEE Transactions onAntennas and Propagation.2008, 56(8):2335-2345[11]Hernandez M A. Chebyshevs approximation algorithms andapplications[J].Computers Mathematics with Applications.2001, 41(3-4):433-455[12]Abreu G T F and Kohno R. A modified Dolph-Chebyshevapproach for the synt-hesis of low side lobe beam patternswith adjustable beam width [J].IEEE Transactions onAntennas and Propagation.2003, 51 (10):3014-3017[13]Raedt H D, Michielsen K, and Kole J S, et al.. Solving theMaxwell equations by the Chebyshev method: A one-stepfinite-difference time-domain algorithm [J].IEEETransactions on Antennas and Propagation.2003, 51(11):3155-3160[14]Chen M S, Wu X L, and Huang Z X, et al.. Chebyshevapproximation for fast frequency-sweep analysis ofelectromagnetic scattering problem [J]. Chinese Journal ofElectronics, 2006, 15(4): 736-738.[15]Chew W C, Jin J M, and Michielssen E, et al.. Fast andEfficient Algorithms in Computational Electromagnetics[M] . New York, Artech House Publishers, 2001: 39-65.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3724) PDF downloads(635) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return