Advanced Search
Volume 31 Issue 11
Dec.  2010
Turn off MathJax
Article Contents
Hongchang CHEN, Qian XU, Ruiyang HUANG, Xiaotao CHENG, Zheng WU. User Identification Across Social Networks Based on User Trajectory[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2758-2764. doi: 10.11999/JEIT180130
Citation: Zhang Hui, Xu Xiao-dong, Tao Xiao-feng, Li Jing-ya, Zhang Ping. Fast Cell Selection Algorithm Based on Extension Theory and Fuzzy AHP[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2697-2702. doi: 10.3724/SP.J.1146.2008.01481

Fast Cell Selection Algorithm Based on Extension Theory and Fuzzy AHP

doi: 10.3724/SP.J.1146.2008.01481
  • Received Date: 2008-11-12
  • Rev Recd Date: 2009-04-09
  • Publish Date: 2009-11-19
  • In cellular communications, the criteria for Fast Cell Selection (FCS) usually depend on single factor, which is lack of flexibility and fairness. In order to improve FCS performance, a novel algorithm is proposed. Based on extension theory, a flexible mapping table is constructed for Quality of Experience (QoE) evaluation parameters, and some actual performance parameters are mapped into corresponding calibration interval. Then the mapping values are calculated. On this basis, a judgment matrix is constructed by means of Fuzzy Analytic Hierarchy Process (FAHP) analysis, and its consistency is tested. Finally, the total utility function values of each cell are calculated by the weight vectors. According to such values, the optimal FCS scheme can be found. Simulation analysis shows that the weight factors in each cell have a directly effect on utility function. Compared with the existing algorithms, the proposed algorithm makes the judgment of performance parameters to be comprehensive with the proper increase of computing complexity, which reduces the blocking probability and raises the throughput.
  • Viterbi A J. CDMA: Principles of Spread SpectrumCommunication. Massachusetts: Addison Wesley Publishing,1995.[2]3GPP TSGR1-11. Power Control for Fast Cell Selection inHSDPA, 2000.3GPP TSGR-07. Details of High Speed Downlink PacketAccess, 2000.3GPP TSGR1-17.Downlink and Uplink Channel Structuresfor HSDPA, 2000.[3]单文浩, 范平志. 移动高速数据包通信的模糊快速小区选择.电子学报, 2004, 32(3): 485-488.Shan Wen-hao and Fan Ping-zhi. Fuzzy fast cell selection inmobile high rate packet data communication, ActaElectronica Sinica, 2004, 32(3): 485-488.[4]Zhang Ying-jun and Letaief K. Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDMsystems[J].IEEE Transactions on Wireless Communications.2004, 3(5):1566-1575[5]梁立涛, 纪阳, 张平. 基于模糊层次分析法的异构系统网络选择算法. 北京邮电大学学报, 2007, 30(2): 71-75.Liang Li-tao, Ji Yang, and Zhang Ping. A network selectionalgorithm based on fuzzy analytic hierarchy process inheterogeneous systems. Journal of Beijing University of Postsand Telecommunications, 2007, 30(2): 71-75.[6]Song Q and Jamalipour A. Network selection in an integratedwireless LAN and UMTS environment using mathematicalmodeling and computing techniques. IEEE WirelessCommunications, 2005, 12(3): 42-48.[7]李振福, 杨忠振. 模糊可拓层次分析法研究. 上海海事大学学报, 2006, 27(3): 71-75.Li Zhen-fu and Yang Zhong-zhen. Study on extension fuzzyAHP method. Journal of Shanghai Maritime University, 2006,27(3): 71-75.[8]Ferrus R, Olmos J, and Galeana H. Evaluation of a cellselection framework for radio access networks consideringbackhaul resource limitations. IEEE PIMRC, Athens, 2007:1-5.[9]Xu Xiao-dong and Tao Xiao-feng, et al.. Fast cell groupselection scheme for improving downlink cell edgeperformance. IEEE ICCCAS, Chengdu, 2006, (2): 1382-1386.[10]Morimo A, Abeta S, and Sawahashi M. Cell selection basedon shadowing variation for forward link broadband OFCDMpacket wireless access. IEEE VTC, Vancouver, 2002, 4:2071-2075.[11]Bakmaz B, Bojkovic Z, and Bakmaz M. Network selectionalgorithm for heterogeneous wireless environment. IEEEPIMRC, Athens, 2007: 1-4.[12]蔡文等. 可拓工程方法. 北京: 科学出版社, 1997: 4-8.Cai Wen, et al.. Extension Engineering Approach. Beijing:Science Press, 1997: 4-8.[13]Saaty A L. The Analytic Hierarchy Process. Pittsburgh:McGraw Hill, 1980.[14]3GPP TS 23.107. QoS Concept and Architecture, 2001.
  • Cited by

    Periodical cited type(17)

    1. 王庚润. 网络空间用户身份对齐技术研究及应用综述. 计算机科学. 2024(05): 12-20 .
    2. 周小涵,贾鹏,杨频,寇蒋恒,刘鑫哲. 基于合并子图的双通道跨网络用户身份识别. 四川大学学报(自然科学版). 2024(04): 9-19 .
    3. 刘政. 基于轨迹数据的用户身份匹配方法研究综述. 山东交通科技. 2024(05): 126-128+136 .
    4. 雷天亮,吉立新,王庚润,刘树新,巫岚. 基于可拓展自注意力时空图卷积神经网络的用户轨迹识别模型. 电子学报. 2024(11): 3741-3750 .
    5. 张洋,马强. 基于时空Transformer-encoder的跨社交网络用户匹配方法. 计算机应用研究. 2024(12): 3742-3748 .
    6. 戴军,马强. 基于用户签到的跨社交网络用户匹配. 计算机工程与应用. 2023(02): 76-84 .
    7. 马强,戴军. 基于深度学习的跨社交网络用户匹配方法. 电子与信息学报. 2023(07): 2650-2658 . 本站查看
    8. 栾孟孟,赵涛,卞怡倩. 基于深度学习的跨社交网络用户身份识别研究. 衡水学院学报. 2022(01): 5-9 .
    9. 苏俊杰,兰培真. 基于层次注意力孪生网络的船舶身份甄别. 大连海事大学学报. 2022(02): 31-39 .
    10. 蔡柔丹. 一种基于用户异步轨迹的身份识别智能方法. 测绘通报. 2022(07): 158-162+167 .
    11. 胡三宁,李玉祥. 基于多源数据整合的跨社交网络用户匹配方法. 计算机仿真. 2021(04): 352-355+466 .
    12. 胡军,杨冬梅,刘立,钟福金. 融合节点状态信息的跨社交网络用户对齐. 山东大学学报(工学版). 2021(06): 49-58 .
    13. 黄容生,刘增才,袁小凯,李果. 国密算法下网络用户身份识别的系统研究. 电子设计工程. 2020(07): 147-150+155 .
    14. 程晓涛,吉立新,尹赢,黄瑞阳. 基于D-S证据理论的网络表示融合方法. 电子学报. 2020(05): 854-860 .
    15. 王前东. 经典轨迹的鲁棒相似度量算法. 电子与信息学报. 2020(08): 1999-2005 . 本站查看
    16. 栾孟孟,赵涛,杨星华,李晓宇,张杰. 国内外跨社交网络用户身份识别综述. 齐鲁工业大学学报. 2020(04): 55-60 .
    17. 李万林,王超,许国良,雒江涛,张轩. 基于信令数据的轨迹驻留点识别算法研究. 电子与信息学报. 2020(12): 3013-3020 . 本站查看

    Other cited types(18)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3226) PDF downloads(855) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return