Advanced Search
Volume 31 Issue 11
Dec.  2010
Turn off MathJax
Article Contents
Zhang Liang, Wang Hai-li, Wu Ren-biao. Matching of Interesting Points Based on Improved SIFT Algorithm[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2620-2625. doi: 10.3724/SP.J.1146.2008.01440
Citation: Zhang Liang, Wang Hai-li, Wu Ren-biao. Matching of Interesting Points Based on Improved SIFT Algorithm[J]. Journal of Electronics & Information Technology, 2009, 31(11): 2620-2625. doi: 10.3724/SP.J.1146.2008.01440

Matching of Interesting Points Based on Improved SIFT Algorithm

doi: 10.3724/SP.J.1146.2008.01440
  • Received Date: 2008-11-03
  • Rev Recd Date: 2009-04-20
  • Publish Date: 2009-11-19
  • This paper presents an improved SIFT(Scale Invariant Feature Transform) descriptor for local feature detection and matching in object tracking. Only the local maxima in DOG scale space are detected as candidate interesting points to improve the stability. In order to avoid rotating the image, the main orientations and descriptors are determined statistically, according to oriented gradients histograms in circular neighborhood around the interesting point. Finally, ratio between the first and the second closest distance is used to match the 96-dimensional vectors. This method exhibits very good performance in high reliable applications, for its effectiveness and reduced complexity.
  • loading
  • Lowe D. Distinctive image features from scale-invariantkeypoints[J].International Journal of Computer Vision.2004,60(2):91-110[2]Luo Jun, Ma Y, Takikawa E, Lao S, Kawade M, and LuBao-Liang. Person-specific SIFT features for facerecognition[C]. IEEE International Conference on Acoustics,Speech and Signal Processing, Honolulu, Hawaii, USA, April,2007, 2(II): 593-596.[3]Hu Xue-long, Tang Ying-cheng, and Zhang Zheng-hua. Videoobject matching based on SIFT algorithm[C]. InternationalConference on Neural Networks and Signal Processing,Zhenjiang, China, June, 2008: 412-415.Yang Zhan-Long and Guo Bao-Long. Image mosaic based onSIFT[C]. Intelligent Information Hiding and MultimediaSignal Processing, Harbin, China, August, 2008: 1422-1425.Gao Ke, Lin Shou-xun, Zhang Yong-dong, Tang Sheng, andRen Hua-min. Attention model based SIFT keypointsfiltration for image retrieval[C]. 7th IEEE/ACISInternational Conference on Computer and InformationScience, Portland, Oregon, USA, May, 2008: 191-196.[4]Re Y and Sukthankar R. PCA-SIFT: A more distinctiverepresentation for local image descriptors[C]. Proceedings ofthe IEEE Conference on Computer Vision and PatternRecognition, Washington, DC, USA, June, 2004, 2: 506-513.[5]Dalal N and Triggs B. Histograms of oriented gradients forhuman detection[C]. Proceedings of the IEEE Conference onComputer Vision and Pattern Recognition, San Diego, CA,USA, June, 2005: 886-893.[6]Lazebnik S, Schmid C, and Ponce J. A sparse texturerepresentation using local affine regions[J].IEEETransactions on Pattern Analysis an Machine Intelligence.2005, 27(8):1265-1278[7]Bay H, Tuytelaars T, and Gool Van J L. SURF: Speeded UpRobust Features[C]. European Conference on ComputerVision, Graz, Austria, May, 2006: 404-417.[8]Mikolajczyk K and Schmid C. A performance evaluation oflocal descriptors[J].IEEE Transactions on Pattern Analysisan Machine Intelligences.2005, 27(10):1615-1630[9]Stein A and Hebert M. Incorporating background invarianceinto feature-based object recognition[C]. IEEE Workshops onApplication of Computer Vision, Breckenridge, CO, USA,Jan, 2005, 1: 37-44.[10]Abdel-Hakim A E and Farag A A. CSIFT: A SIFT descriptorwith color invariant characteristics[C]. Proceedings ofComputer Vision and Pattern Recognition Conference, NewYork, USA, 2006: 1978-1983.[11]Ancuti C and Bekaert P. SIFT-CCH: Increasing the SIFTdistinctness by color co-occurrence histograms[C].Proceedings of the 5th International Symposium on imageand Signal Processing and Analysis, Istanbul, Turkey, 2007:130-135.Cheung W and Hamarneh G. n-SIFT: n-dimensional scaleinvariant feature transform for matching medical images[C].Proceedings of the Fourth IEEE International Symposium onBiomedical Imaging: From Nano to Macro, Washington D.C.,USA, 2007: 720-723.Kisku, D R, Rattani A, Grosso E, and Tistarelli M. Faceidentification by SIFT-based complete graph topology[C].IEEE Workshop on Automatic Identification AdvancedTechnologies, Alghero, Italy, June, 2007: 63-68.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3247) PDF downloads(1440) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return