Belouchrani A, Abed-Meraim K, and Cardoso J F, et al.. Ablind source separation technique using second-orderstatistics [J].IEEE Transactions on Signal Processing.1997,45(2):434-444[2]Feng D Z, Zhang X D, and Bao Z. An efficient multistagedecomposition approach for independent components [J].Signal Processing.2003, 83(1):181-197[3]Laar J, Moonen M, and Sommen P C W. MIMOinstantaneous blind identification based on second-ordertemporal structure [J].IEEE Transactions on SignalProcessing.2008, 56(9):4354-4364[4]Feng D Z, Zheng W X, and Cichocki A. Matrix-groupalgorithm via improved whitening process for extractingstatistically independent sources from array signals [J].IEEETransactions on Signal Processing.2007, 55(3):962-977[5]Buchner H, Aichner R, and Kellermann W. A generalizationof blind source separation algorithms for convolutivemixtures based on second-order statistics [J].IEEETransactions on Speech and Audio Processing.2005, 13(1):120-134[6]Gorokhov A and Loubaton P. Subspace-based techniques forblind separation of convolutive mixtures with temporallycorrelated sources [J].IEEE Transactions on Circuits andSystems.1997, 44(9):813-820[7]Ghennioui H, Fadaili E M, and Moreau N T, et al.. Anonunitary joint block diagonalization algorithm for blindseparation of convolutive mixtures of sources [J].IEEE SignalProcessing Letters.2007, 14(11):860-863[8]Sawada H, Mukai R, and Araki S, et al.. A robust and precisemethod for solving the permutation problem offrequency-domain blind source separation [J].IEEETransactions on Speech and Audio Processing.2004, 12(5):530-538[9]He Z S, Xie S L, and Ding S X, et al.. Convolutive blindsource separation in the frequency domain based on sparserepresentation [J].IEEE Transactions on Audio, Speech, andLanguage Processing.2007, 15(5):1551-1563[10]Castella M, Rhioui S, and Moreau E, et al.. Quadratic higherorder criteria for iterative blind separation of a MIMOconvolutive mixture of sources [J].IEEE Transactions onSignal Processing.2007, 55(1):218-232
|