Rudin L, Osher S, and Fatemi E. Nonlinear total variationbased noise removal algorithms[J].Physica D.1992, 60(1-4):259-268[2]Vogel C R and Oman M E. Fast, robust total variation-basedreconstruction of noisy, blurred images[J].IEEE Transactionson Image Processing.1998, 7(6):813-824[3]Chan Tony F, Golub Gene H, and Mulet Pep. A nonlinearprimal-dual method for total variation-based imagerestoration[R]. UCLA Math Department CAM Report, 1995.[4]Bouman C and Sauer K. A generalized Gaussian image modelfor edge-preserving MAP estimation[J].IEEE Transactionson Image Processing.1993, 2(3):296-310[5]Charbonnier P, Blanc-Fraud L, Aubert G, and Barlaud M.Deterministic edge-preserving regularization in computerimaging[J].IEEE Transactions on Image Process.1997, 6(2):298-311[6]Perona P and Malik J. Scale space and edge detection usinganisotropic diffusion[J].IEEE Transactions on PatternAnalysis and Machine Intelligence.1990, 12(7):629-639[7]Teboul S, Blanc-Feraud L, Aubert G, and Barlaud M.Variational approach for edge-preserving regularization usingcoupled PDE's[J].IEEE Transactions on Image Processing.1998, 7(3):387-397[8]Chan T F and Wong C K. Total variation blinddeconvolution[J].IEEE Transactions on Image Processing.1998, 7(3):370-375[9]Gilboa G, Sochen N, and Zeevi Y Y. Estimation of optimalPDE-based denoising in the SNR sense[J].IEEETransactions on Image Processing.2006, 15(8):2269-2280[10]Gilboa G, Sochen N, and Zeevi Y Y. Variational denoising ofpartly-textured images by spatially varying constraints[J].IEEE Transactions on Image Processing.2006, 15(8):2281-2289[11]Mrazek P. Selection of optimal stopping time for nonlineardiffusion filtering[J]. International Journal of ComputerVision, 2003, 52(2/3): 189-203.[12]Golub G H, Heath M, and Wahba G. Generalizedcross-validation as a method for choosing a good ridgeparameter [J].Technometrics.1979, 21(2):215-223[13]Craven P and Wahba G. Smoothing noisy data with splinefunctions-estimating the correct degree of smoothing by themethod of generalized cross validation[J]. NumerischeMathematik, 1979, 31(4): 377-403.[14]Hansen P C and O'Leary D P. The use of the L-curve in theregularization of discrete ill posed problems[J].SIAM Journalof Science Computing.1993, 14(6):1487-1503[15]Hansen P C. Analysis of discrete ill-posed problems by meansof the L-curve[J].SIAM Review archive.1992, 34(4):561-580[16]Archer G and Titterington D. On some bayesianregularization methods for image restoration[J].IEEETransactions on on Image Processing.1995, 4(7):989-995[17]Galatsanos N and Katsaggelos A. Methods for choosing theregularization parameter and estimating the noise variance inimage restoration and their relation[J].IEEE Transactions onon Image Processing.1992, 1(3):322-336[18]Galatsanos N, Mesarovic V, Molina R, Mateos J, andKatsaggelos A. Hyper-parameter estimation using gammahyper-priors in image restoration from partially-knownblurs[J].Optical Engineering.2002, 41(8):1845-1854[19]Molina R, Katsaggelos A, and Mateos J. Bayesian andregularization methods for hyperparameter estimation inimage restoration[J].IEEE Transactions on Image Processing.1999, 8(2):231-246[20]Deng G. Iterative learning algorithms for linear Gaussianobservation models[J].IEEE Transactions on on SignalProcessing.2004, 52(8):2286-2297[21]Morozov V A. On the solution of functional equations by themethod of regularization[J]. Soviet Math. Dokl, 1966, 7(1):414-417.
|