Advanced Search
Volume 31 Issue 5
Dec.  2010
Turn off MathJax
Article Contents
Zhou Deng-wen, Liu Ke-qin. Neighborhood Adaptive Image Denoising Using Dual-Tree Complex Wavelet Transform[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1197-1200. doi: 10.3724/SP.J.1146.2008.00469
Citation: Zhou Deng-wen, Liu Ke-qin. Neighborhood Adaptive Image Denoising Using Dual-Tree Complex Wavelet Transform[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1197-1200. doi: 10.3724/SP.J.1146.2008.00469

Neighborhood Adaptive Image Denoising Using Dual-Tree Complex Wavelet Transform

doi: 10.3724/SP.J.1146.2008.00469
  • Received Date: 2008-04-22
  • Rev Recd Date: 2008-09-19
  • Publish Date: 2009-05-19
  • In this paper, a new neighborhood adaptive image denoising method is proposed using dual-tree complex wavelet transforms. It is an improvement of the existing denoising method NeighShrink. The optimal thresholds and neighboring window sizes are determined for every subband in the wavelet domain using Steins unbiased risk estimate, and NeighShrink is also extended from orthogonal wavelet transforms to dual-tree complex wavelet transforms in this paper. Experimental results show that the proposed method performs?better than some of the existing methods.
  • loading
  • Donoho D L and Johnstone I M. Ideal spatial adaptation viawavelet shrinkage [J].Biometrika.1994, 81(3):425-455[2]Cai T T and Silverman B W. Incorporating information onneighbouring coefficients into wavelet estimation[J]. Sankhya:The Indian Journal of Statistics, Series B, 2001, 63(2):127-148.[3]Chen G Y, Bui T D, and Krzy˙zak A. Image denoising withneighbour dependency and customized wavelet and threshold[J].Pattern Recognition.2005, 38(1):115-124[4]Coifman R R and Donoho D L. Translation invariantdenoising [C]. In Wavelets and Statistics, Springer LectureNotes in Statistics 103, San Diego, CA, USA, 1995: 125-150.[5]Selesnick I W, Baraniuk R G, and Kingsbury N G. The dualtreecomplex wavelet transform [J].IEEE Signal ProcessingMagazine.2005, 22(6):123-151[6]Balster E J, Zheng Y F, and Ewing R L. Feature-basedwavelet shrinkage algorithm for image denoising [J].IEEETrans. on Image Processing.2005, 14(12):2024-2039[7]Pizurica A and Philips W. Estimating probability of presenceof a signal of interest in multiresolution single- and multibandimage denoising [J].IEEE Trans. on Image Processing.2006,15(3):654-665[8]Blu T and Luisier F. The SURE-LET approach to imagedenoising [J].IEEE Trans. on Image Processing.2007, 16(11):2778-2786[9]Sendur L and Selesnick I W. Bivariate shrinkage with localvariance estimation [J].IEEE Signal Processing Letters.2002,9(12):438-441[10]Stein C. Estimation of the mean of a multivariate normaldistribution [J].Annuals of Statistics.1981, 9(6):1135-1151
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3656) PDF downloads(777) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return