Advanced Search
Volume 31 Issue 5
Dec.  2010
Turn off MathJax
Article Contents
Liu Hua-lin, Yang Wan-lin. Radar Target Recognition Based on Kernel Uncorrelated Discriminant Subspace of GSVD[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1095-1098. doi: 10.3724/SP.J.1146.2008.00384
Citation: Liu Hua-lin, Yang Wan-lin. Radar Target Recognition Based on Kernel Uncorrelated Discriminant Subspace of GSVD[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1095-1098. doi: 10.3724/SP.J.1146.2008.00384

Radar Target Recognition Based on Kernel Uncorrelated Discriminant Subspace of GSVD

doi: 10.3724/SP.J.1146.2008.00384
  • Received Date: 2008-04-07
  • Rev Recd Date: 2008-12-08
  • Publish Date: 2009-05-19
  • A Kernel Uncorrelated Discriminant Subspace (KUDS) method based on Generalized Singular Value Decomposition (GSVD) for radar target recognition is proposed. The new method combines with the advantage of GSVD and kernel trick, which can effectively overcome the limitation of traditional linear methods in solving singular problem, but also improve the class separability further. In addition, a conclusion from Fishers criterion that there exists no useful discriminative information in the null space of the range profile population scatter matrix is derived, which can be used to reduce the dimensionality of original scatter matrices as well as the computation complexity of the following operation of solving kernel optimal discriminant vectors. Experimental results based on three measured airplanes data confirm the effectiveness of the proposed method.
  • loading
  • 袁莉, 刘宏伟, 保铮. 雷达高分辨距离像分类器的参数自适应学习算法[J].电子与信息学报.2008, 30(1):198-202浏览[2]周代英, 杨万麟. 雷达目标一维距离像识别中的最优因式分析子空间法[J].电子与信息学报.2007, 29(10):2341-2345浏览[3]刘华林, 杨万麟. 基于QR 分解的广义辨别分析用于雷达目标识别[J]. 红外与毫米波学报, 2007, 26(3): 205-208.Liu H L and Yang W L. Radar target recognition based ongeneralized discriminant analysis of QR decompostition[J]. J.Infrared Millim. Waves, 2007, 26(3): 205-208.[4]Yu X L, Wang X G, and Liu B Y. A direct kerneluncorrelated discriminant analysis algorithm[J].IEEE SignalProcessing Letters.2007, 14(10):742-745[5]Jin Z, Yang J Y, and Hu Z S, et al.. Face recognition based onthe uncorrelated discriminant transformation[J]. PatternRecognition, 2001, 34(7): 1405-1416.[6]杨静宇, 金忠, 胡钟山. 具有统计不相关性的最佳鉴别特征空间的维数定理[J]. 计算机学报, 2003, 26(1): 110-115.Yang J Y, Jin Z, and Hu Z S. A theorem on dimensionality ofthe uncorrelated optimal discriminant features space[J].Chinear Journal of Computers, 2003, 26(1): 110-115.[7]Liang Z Z and Shi P F. Uncorrelated discriminant vectorsusing a kernel method[J].Pattern Recognition.2005, 38(1):307-310[8]Howland P and Park H. Generalizing discriminant analysisusing the generalized singular value decomposition[J].IEEETrans. on Pattern Analysis and Machine Intelligence.2004,26(8):995-1006[9]Baudat G and Anouar F. Generalized discriminant analysisusing a kernel approach[J].Neural Computation.2000, 12(10):2385-2404[10]Sch.kopf B, Smola A, and Mller K. Nonlinear componentanalysis as a kernel eigenvalue problem[J]. NeuralComputation, 1998, 10(5): 1299-1319.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (7941) PDF downloads(796) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return