Advanced Search
Volume 31 Issue 5
Dec.  2010
Turn off MathJax
Article Contents
Quan Ya-min, Ding Yao-gen, Wang Shu-zhong, Gao Dong-ping. Calculation and Simulation of the Electronic Conductance in Double Gap Coupling MBK Cavity[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1214-1217. doi: 10.3724/SP.J.1146.2008.00248
Citation: Quan Ya-min, Ding Yao-gen, Wang Shu-zhong, Gao Dong-ping. Calculation and Simulation of the Electronic Conductance in Double Gap Coupling MBK Cavity[J]. Journal of Electronics & Information Technology, 2009, 31(5): 1214-1217. doi: 10.3724/SP.J.1146.2008.00248

Calculation and Simulation of the Electronic Conductance in Double Gap Coupling MBK Cavity

doi: 10.3724/SP.J.1146.2008.00248
  • Received Date: 2008-03-09
  • Rev Recd Date: 2008-07-07
  • Publish Date: 2009-05-19
  • Based on the single-mode and multi-mode space charge wave theory, the analytical expressions for the electronic conductance in a double gap coupling MBK cavity are derived. The analytical theories show that the single-mode theory is sufficiently accurate for common coupling double gap cavity. In addition, the results of analytical theory are shown to agree well with particle-in-cell simulations. Moreover the effects of the modulation coefficient and axial magnetic field on the electronic conductance are researched by PIC simulation. The results show that the electronic conductance calculated by small signal theory is accurate when the modulation coefficient is less than 0.1 and the magnetic field exceeds 1.5 times of the Brillouin field.
  • loading
  • Vlasov D. Calculation of the conductance introduced by anelectron beam into a resonator. Radiotekhnika i Electronika(USSR), 1963, 8(5): 878-880.[2]Branch C M. Electron beam coupling in interaction gaps ofcylindrical symmetry. IEEE Trans. on Electron Devices,1961, ED-8(5): 193-207.[3]Wilsen C B, Yue Y L, and Antonsen Jr T M, et al.. Asimulation study of beam loading on a cavity[J].IEEE Trans.on Plasma Sci.2002, 30(3):1160-1168[4]Craig E J. The beam-loading admittance of gridless klystrongaps. IEEE Trans. on Electron Devices, 1967, ED-14(5):273-278.[5]Kowalczyk R, Yue Y L, and Antonsen Jr T M , et al.. ACspace charge effects on beam loading of a cavity[J].IEEE Trans.on Electron Devices.2005, 52(9):2087-2095[6]Kowalczyk R, Yue Y L, and Gilgenbach R M. Effects of afinite axial magnetic field on the beam loading of a cavity[J].IEEE Trans. on Electron Devices.2004, 51(9):1522-1527[7]Lien E and Robinson D. Study and investigation leading tothe design of broadband highpower klystron amplifiers.Technical Report for United States And ElectronicsCommand.[J].March.1967,No.ECOM 一02157.1967,:-[8]林福民, 丁耀根. 速调管耦合双间隙输出回路的绝对稳定性判据. 真空电子技术, 2004, (2): 10-12.Lin F M and Ding Y G. Criterion of absolute stability ofoutput circuit with coupling two-gap cavity of klystron.Vacuum Electronics, 2004, (2): 10-12.[9]Wang Yong, Ding Y G, and Liu P K, et al.. Development ofan S-band klystron with bandwidth of more than 11%[J].IEEETrans. on Plasma Sci.2006, 34(3):572-575[10]Nguyen K T, Pershing D E, Abe D K, and Levush B L.Bandwidth extension of an S-band, fundamental-modeeight-beam klystron[J].IEEE Trans. on Plasma Sci.2006,34(3):576-583[11]Ding Y G, Zhu Y S, and Yin X L, et al.. Research progress onC-band broadband multibeam klystron[J].IEEE Trans. onElectron Devices.2007, 54(4):624-631[12]Wessel-Berg T. A general theory of klystrons with arbitraryextended interaction fields. Stanford University, HansenMicrowave Laboratory Reports, 1957: 376.[13]谢家麟, 赵永翔. 速调管群聚理论. 北京: 科学出版社, 1966:83-124.Xie J L and Zhao Y X. Klystron Bunching Theory. Beijing;Science Press, 1966: 83-124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3282) PDF downloads(724) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return