Luo Ji-an, Chai Li, Wang Zhi. Distributed Moving Horizon State Estimation for Wireless Sensor Networks Using Multiple Quantized Data[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2819-2823. doi: 10.3724/SP.J.1146.2008.00112
Citation:
Luo Ji-an, Chai Li, Wang Zhi. Distributed Moving Horizon State Estimation for Wireless Sensor Networks Using Multiple Quantized Data[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2819-2823. doi: 10.3724/SP.J.1146.2008.00112
Luo Ji-an, Chai Li, Wang Zhi. Distributed Moving Horizon State Estimation for Wireless Sensor Networks Using Multiple Quantized Data[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2819-2823. doi: 10.3724/SP.J.1146.2008.00112
Citation:
Luo Ji-an, Chai Li, Wang Zhi. Distributed Moving Horizon State Estimation for Wireless Sensor Networks Using Multiple Quantized Data[J]. Journal of Electronics & Information Technology, 2009, 31(12): 2819-2823. doi: 10.3724/SP.J.1146.2008.00112
In this paper, a distributed moving horizon state estimation approach is presented based on multi-bit quantized data. Each sensor node preserves a list of thresholds which are used to quantize observations into multiple bits. After receiving these bits, the Fusion Center (FC) makes the final estimation for system states. Simulation results show that the more number of thresholds, better estimation results will be made, Which is Consistent with Common Sense. Compared with single bit distributed moving horizon state estimation, this method avoids FC sending the estimate information back to sensor nodes and provides higher precision of state estimation.
Ribeiro A and Giannakis G B. Bandwidth-constraineddistributed estimation for wireless sensor networks-part I:Gaussian case[J].IEEE Transactions on Signal Processing.2006,54(3):1131-1143[2]Ribeiro A and Giannakis G B. Bandwidth-constrainedestimation for wireless sensor networksPart II unknownprobability density function[J].IEEE Transactions on SignalProcessing.2006, 54(7):2784-2796[3]Luo Z Q. Universal decentralized estimation in a bandwidthconstrained sensor network[J].IEEE Transactions onInformation Theory.2005, 51(6):2210-2219[4]Xiao J J and Luo Z Q. Decentralized estimation in aninhomogeneous sensing environment[J].IEEE Transactions onInformation Theory.2005, 51(10):3564-3575[5]Ribeiro A, Giannakis G B, and Roumeliotis S I. SOI-KF:distributed Kalman filtering with low-cost communicationsusing the sign of innovations[J].IEEE Transactions on SignalProcessing.2006, 54(12):4782-4795[6]骆吉安,柴利. 传感器网络中的分布式滚动时域状态估计. 传感技术学报,2008, 21(5): 828-833.[7]李燕君,王智,孙优贤. 资源受限的无线传感器网络基于衰减信道的决策融合. 软件学报, 2007, 18(5): 1130.1137.[8]Rao C V, Rawlings J B, and Lee J H. Constrained linear stateestimationA moving horizon approach[J].Automatica.2001,37(10):1619-1628