Advanced Search
Volume 31 Issue 4
Dec.  2010
Turn off MathJax
Article Contents
Xia Hao, Zhang Rong. The Lossless Compression Method for Hyperspectral Images Based on Optimized Prediction Tree[J]. Journal of Electronics & Information Technology, 2009, 31(4): 813-817. doi: 10.3724/SP.J.1146.2007.01933
Citation: Xia Hao, Zhang Rong. The Lossless Compression Method for Hyperspectral Images Based on Optimized Prediction Tree[J]. Journal of Electronics & Information Technology, 2009, 31(4): 813-817. doi: 10.3724/SP.J.1146.2007.01933

The Lossless Compression Method for Hyperspectral Images Based on Optimized Prediction Tree

doi: 10.3724/SP.J.1146.2007.01933
  • Received Date: 2007-12-20
  • Rev Recd Date: 2008-06-17
  • Publish Date: 2009-04-19
  • Prediction tree is a traditional and efficient method for lossless compression of hyperspectral image. In this paper an optimized method based on prediction tree is presented. To express the variation of local context of two neighboring bands, a partial extending factor is introduced to compensate the predicted value of current pixel so as to reduce the prediction error. Furthermore, a synthetical prediction based lossless compression scheme for AVIRIS hyperspectral images is proposed. Experimental results demonstrate that the proposed method works efficiently on AVIRIS images with low complexity and limited memory.
  • loading
  • 张晓玲, 沈兰荪. 高光谱图像的无损压缩研究进展[J]. 测控技术, 2004, 23(5): 23-27.Zhang Xiao-ling and Shen Lan-sun. Research advances onlossless compression of hyperspectral image [J]. Measurement Control Technology, 2004, 23(5): 23-27.[2]Zhang Jing and Liu Guizhong. An efficient reorderingprediction-based lossless compression algorithm forhyperspectral images [J].IEEE Geosci. Remote SensLetters.2007, 4(2):283-287[3]Slyz M and Zhang L. A block-based inter-band losslesshyperspectral image compressor [C]. Proc. DCC 2005, Utah,US, 2005: 427-436.[4]Mielikainen J and Toivanen P. Clustered DPCM for thelossless compression of hyperspectral images [J].IEEE Trans.on Geosci. Remote Sens.2003, 41(12):2943-2946[5]Rizzo F, Carpentieri B, and Motta G, et al.. Low-complexitylossless compression of hyperspectral imagery via linearprediction [J].IEEE Signal Process. Lett.2005, 12(2):138-141[6]Wang H, Babacan S D, and Sayood K. Lossless hyperspectralimage compression using context-based conditional averages[C]. Proc. DCC, Snowbird, Utah, US, 2005: 418-426.[7]Jain S K and Adjeroh D A. Edge-based prediction for losslesscompression of hyperspectral images[C]. DCC2007, Utah, US,2007: 153-162.[8]Mielikainen J. Lossless compression of hyperspectral imagesusing lookup tables[J]. IEEE Signal Processing Letter, 2006,3(3): 157-160.[9]Aiazzi B, Alparone L, and Baronti S. Crisp and fuzzyadaptive spectral predictions for lossless and near-losslesscompression of hyperspectral imagery [J].IEEE Gersci. Remote Sens. Letter.2007, 4(4):532-536[10]Memon N D, Sayood K, and Magliveras S. Losslesscompression of multispectral image data [J].IEEE Trans. onGeosci. Remote Sensing.1994, 32(2):282-289[11]Wu X and Memon N. Context-based lossless interbandcompression-extending CALIC [J]. IEEE Trans. on ImageProcess, 2000, 9(6): 994-1001.[12]张荣, 阎青, 刘政凯. 一种基于预测树的多光谱遥感图像无损压缩方法[J]. 遥感学报, 1998, 2(3): 171-175.Zhang Rong, Yan Qing, and Liu Zheng-kai. A predictiontree-based lossless compression technique of multispectralimage data[J]. Journal of Remote Sensing, 1998, 2(3): 171-175.[13]吴铮, 何明一, 冯燕, 等. 基于误差补偿预测树的多光谱遥感图像无损压缩方法[J]. 遥感学报, 2005, 9(2): 143-147.Wu Zheng, He Ming-yi, and Feng Yan, et al.. Losslesscompression of multispectral imagery by error compensatedprediction tree [J]. Journal of Remote Sensing, 2005, 9(2):143-147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3084) PDF downloads(731) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return