Advanced Search
Volume 30 Issue 8
Jan.  2011
Turn off MathJax
Article Contents
Guo Wen-yan, Han Chong-zhao. Particle Filter Algorithm Based on Statistical Linear Regression[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1905-1908. doi: 10.3724/SP.J.1146.2007.01784
Citation: Guo Wen-yan, Han Chong-zhao. Particle Filter Algorithm Based on Statistical Linear Regression[J]. Journal of Electronics & Information Technology, 2008, 30(8): 1905-1908. doi: 10.3724/SP.J.1146.2007.01784

Particle Filter Algorithm Based on Statistical Linear Regression

doi: 10.3724/SP.J.1146.2007.01784
  • Received Date: 2007-11-15
  • Rev Recd Date: 2008-04-15
  • Publish Date: 2008-08-19
  • In this paper, a new particle filter based on Statistical Linear Regression (SLR) is proposed for the state estimation of non-Gauss nonlinear systems. In the new algorithm, the importance density function of particle filter is generated by linearizing the nonlinear function using statistical linear regression through a set of Gauss-Hermite quadrature points estimating regression coefficient. The density function integrates the new observations into system state transition and extends the overlap fields with true posterior density. The simulation shows that the new algorithm not only has high estimation accuracy but also has better stability and less computation amount than the PF.
  • loading
  • Shalom Y B, Li X R, and Rubarajan T. Estimation withApplications to Tracking and Navigation [M]. New York:Wiley, 2001: 60-80.[2]Gelb A. Application of Optimal Estimation [M]. Cambridge,MA: MIT Press, 1974: 25-50.[3]Press W H, Teuklsky S A, and Vetterling W T, et al..Numerical Recipes in C 2nd ed [M]. Cambridge, U.K.:Cambridge Univ. Press, 1992: 120-140.[4]Ito K and Xiong K. Gaussian filters for nonlinear filteringproblems [J].IEEE Trans. on Automatic Control.2000,45(5):910-927[5]Cappe O, Godsill S J, and Moulines E. An overview ofexisting methods and recent advances in sequential MonteCarlo [J].Proc. IEEE.2007, 95(4):899-924[6]Arasaranam I, Haykin S, and Elliott R J. Discrete-timenonlinear filtering algorithms using Gauss-Hermitequadrature [J].Proc. IEEE.2007, 95(5):953-974[7]袁则剑, 郑南宁, 贾新春. 高斯-厄米特粒子滤波器[J]. 电子学报, 2003, 31(7): 970-973.Yuan Ze-jian, Zheng Nan-ning, and Jia Xin-chun. The Gauss-Hermite particle filter [J]. Acta Electronica Sinica, 2003,31(7): 970-973.[8]Uhlmann S J and Durrant-Whyte H F. A new method for thenonlinear transformation of means and covariances in filtersand estimatiors[J].IEEE Trans. on Automatic Control.2000,45(3):477-482[9]Doucet A. On sequential simulation based methods forBayesian filtering [ EB/OL ] . available from http ://www.researchindex. com.[10]梁军利, 杨树元, 曲超等. 一种新的基于数值积分的粒子滤波算法[J].电子与信息学报.2007, 29(6):1369-1372浏览[11]Arulampalam M S, Maskell S, and Gordon N. A tutorial onparticle filters for online nonlinear/non-Gaussian Bayesiantracking [J]. IEEE Trans. on Aerospace and ElectronicSystems, 2002, 55(2): 174-188.[12]Merwe R D and Doucet A. The Unscented Particle filter.Advances in neural Information Processing Systems, MIT,2000: 123-165.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2902) PDF downloads(1399) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return